Skip to main content
Log in

An Approach to Optimize Size Parameters of Forging by Combining Hot-Processing Map and FEM

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The size parameters of 6061 aluminum alloy rib-web forging were optimized by using hot-processing map and finite element method (FEM) based on high-temperature compression data. The results show that the stress level of the alloy can be represented by a Zener-Holloman parameter in a hyperbolic sine-type equation with the hot deformation activation energy of 343.7 kJ/mol. Dynamic recovery and dynamic recrystallization concurrently preceded during high-temperature deformation of the alloy. Optimal hot-processing parameters for the alloy corresponding to the peak value of 0.42 are 753 K and 0.001 s−1. The instability domain occurs at deformation temperature lower than 653 K. FEM is an available method to validate hot-processing map in actual manufacture by analyzing the effect of corner radius, rib width, and web thickness on workability of rib-web forging of the alloy. Size parameters of die forgings can be optimized conveniently by combining hot-processing map and FEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Raj, Development of a Processing Map for Use in Warm-Forming and Hot Forming Processes, Metall. Trans., 1981, 12, p 1089–1097

    Article  Google Scholar 

  2. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doravelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892

    Article  Google Scholar 

  3. J.S. Jin, H.E. Hu, and J.C. Xia, High-Temperature Deformation Behavior and Processing Map of 7050 Aluminum Alloy, Met. Mater. Int., 2012, 18, p 69–75

    Article  Google Scholar 

  4. Y.-N. Kwon, Y.S. Lee, and J.H. Lee, Deformation Behavior of Al-Mg-Si Alloy at the Elevated Temperature, J. Mater. Proc. Technol., 2007, 187-188, p 533–536

    Article  Google Scholar 

  5. J. Talamantes-Silva, M.F. Abbod, E.S. Puchi Cabrera, I.C. Howard, J.H. Beynon, C.M. Sellars, and D.A. Linkens, Microstructure Modeling of Hot Deformation of Al-1%Mg Alloy, Mater. Sci. Eng. A, 2009, 525, p 147–158

    Article  Google Scholar 

  6. B.H. Lee, S.M. Kim, and E.M. Mohamed, Effect of stress state on the high temperature workability of AZ31 Mg alloy, Met. Mater. Int., 2010, 16, p 197–203

    Article  Google Scholar 

  7. F.A. Slooff, J.S. Dzwonczyk, J. Zhou, J. Duszczyk, and L. Katgerman, Hot Workability Analysis of Extruded AZ Magnesium Alloys with Processing Maps, Mater. Sci. Eng. A, 2010, 527, p 735–744

    Article  Google Scholar 

  8. N. Srinivasan, Y.V.R.K. Prasad, and P.R. Rao, Hot Deformation Behaviour of Mg-3Al Alloy-A Study Using Processing Map, Mater. Sci. Eng. A, 2007, 476, p 146–156

    Article  Google Scholar 

  9. I. Philippart and H.J. Rack, High Temperature High Strain Deformation Behavior of Ti-6.8Mo-4.5Fe-1.5Al, Mater. Sci. Eng. A, 1998, 254, p 253–267

    Article  Google Scholar 

  10. M. Rajamuthamilselvan and S. Ramanathan, Development of Processing Map for 7075 Al/20% SiCp Composite, J. Mater. Eng. Perform., 2012, 21, p 191–196

    Article  Google Scholar 

  11. H.T. Zhou, R.R. Liu, Z.C. Liu, X. Zhou, Q.Z. Peng, F.H. Zhong, and Y. Peng, Hot Deformation Characteristics of GH625 and Development of a Processing Map, J. Mater. Eng. Perform., 2013, 22, p 2515–2521

    Article  Google Scholar 

  12. B.F. Guo, H.P. Ji, X.G. Liu, L. Gao, R.G. Dong, and Q.H. Zhang, Research on Flow Stress During Hot Deformation Process and Processing Map for 316LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 1455–1461

    Article  Google Scholar 

  13. A. Amiri, M.H. Sadeghi, and G.R. Ebrahimi, Characterization of Hot Deformation Behavior of AMS 5708 Nickel-Based Superalloy Using Processing Map, J. Mater. Eng. Perform., 2013, 22, p 3940–3945

    Article  Google Scholar 

  14. Y.H. Duan, Hot Deformation and Processing Map of Pb-Mg-10Al-1B Alloy, J. Mater. Eng. Perform., 2013, 22, p 3049–3054

    Article  Google Scholar 

  15. J.G. Kaufman, Introduction to Aluminum Alloys and Tempers, ASM International, Materials Park, OH, 2000

    Google Scholar 

  16. S. Dziaszyk, E.J. Payton, F. Friedel, V. Marx, and G. Eggeler, On the Characterization of Recrystallized Fraction Using Electron Backscatter Diffraction: A Direct Comparison to Local Hardness in an IF Using Nanoindentation, Mater. Sci. Eng. A, 2010, 527, p 7854–7864

    Article  Google Scholar 

  17. Ph Gerber, J. Tarasiuk, R. Chiron, and B. Bacroix, Estimation of the Recrystallized Volume Fraction From Local Misorientation Calculations, Arch. Metall. Mater., 2005, 50, p 747–755

    Google Scholar 

  18. H. Lu, P. Sivaprasad, and C.H.J. Davies, Treatment of Misorientation Data to Determine the Fraction of Recrystallized Grains in a Partially Recrystallized Metal, Mater. Charact., 2003, 51, p 293–300

    Article  Google Scholar 

  19. B. Wu, M.Q. Li, and D.W. Ma, The Flow Behavior and Constitutive Equations in Isothermal Compression of 7050 Aluminum Alloy, Mater. Sci. Eng. A, 2012, 542, p 79–87

    Article  Google Scholar 

  20. N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain, Mater. Sci. Eng. A, 2012, 535, p 252–257

    Article  Google Scholar 

  21. O.D. Sherby, R.H. Klundt, and A.K. Miller, Flow Stress, Subgrain Size, and Subgrain Stability at Elevated Temperature, Metall. Mater. Trans. A, 1977, 8(6), p 843–850

    Article  Google Scholar 

  22. H.J. McQueen and O.C. Celliers, Application of Hot Workability Studies to Extrusion Processing: Part III. Physical and Mechanical Metallurgy of Al-Mg-Si and Al-Zn-Mg Alloys, Can. Metall. Q., 1997, 36, p 73–86

    Google Scholar 

  23. H. Zhang, L.X. Li, Y. Deng, and D.S. Peng, Hot Deformation Behavior of the New Al-Mg-Si-Cu Aluminum Alloy During Compression at Elevated Temperatures, Mater. Charact., 2007, 58, p 168–173

    Article  Google Scholar 

  24. J.D. Whittenberger, R.D. Noebe, and J. Darolia, Elevated Temperature Creep Deformation in Solid Solution Strengthened <001> NiAl-3.6Ti Single Crystals, Mater. Sci. Eng. A, 2004, 367, p 143–151

    Article  Google Scholar 

  25. S.V.S.N. Murty and B.N. Rao, On the Development of Instability Criteria During Hotworking with Reference to IN 718, Mater. Sci. Eng. A, 1998, 254, p 76–82

    Article  Google Scholar 

  26. S.V.S.N. Murty, B.N. Rao, and B.P. Kashyap, Development and Validation of a Processing Map for AFNOR 7020 Aluminium Alloy, Mater. Sci. Technol., 2004, 20(6), p 772–782

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the NSFC (51105373) and NCET-11-0185.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Y. Wang or L. Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H.E., Wang, X.Y. & Deng, L. An Approach to Optimize Size Parameters of Forging by Combining Hot-Processing Map and FEM. J. of Materi Eng and Perform 23, 3887–3895 (2014). https://doi.org/10.1007/s11665-014-1182-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1182-6

Keywords

Navigation