Skip to main content
Log in

Hot Deformation Characteristics of GH625 and Development of a Processing Map

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The hot deformation behavior of GH625 is investigated by a compression test in the temperature range of 950-1150 °C and the strain rate of 10−3-5 s−1. It is found that the flow stress behavior is described by the hyperbolic sine constitutive equation with average activation energy of 421 kJ/mol. Through the flow stresses’ curves, the processing maps are constructed and analyzed according to the dynamic materials model. In the processing map, the variation of the efficiency of the power dissipation is plotted as a function of temperature and strain rate, and the maps exhibit a significant feature with a domain of dynamic recrystallization occurring at the temperature range of 950-1150 °C and in the strain rate range of 0.005-0.13 s−1, which are the optimum parameters for hot working of the alloy. Meanwhile, the instability zones of flow behavior can also be recognized by the maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Shankar, K.B.S. Rao, and S.L. Mannan, Microstructure and Mechanical Properties of Inconel 625 Superalloy, J. Nucl. Mater., 2001, 288(2-3), p 222–232

    Article  CAS  Google Scholar 

  2. H.L. Eiselstein and D.J. Tillack, Alloy 706 Metallurgy and Turbine Wheel Application, Superalloy 718, 625 and Various Derivatives, E.A. Loria, Ed., TMS, Warrendale, PA, 1991, p 1–14

  3. E.E. Brown and D.R. Muzyka, Nickel-Based Alloys, Nickel-Iron Alloy: Superalloys II-High Temperature Material for Aerospace and Industrial Power, C.T. Sims, N.S. Stoloff, W.C. Hagel, Ed., Wiley, New York, 1987, p 97–134

  4. M. Ahmad, J.I. Akhter, M. Shahzad, and M. Akhtar, Craching During Solidification of Diffusion Bonded Inconel 625 in the Presence of Zircaloy-4 Interlayer, J. Alloys Compd., 2008, 457, p 131–134

    Article  CAS  Google Scholar 

  5. M. Sundararaman, L. Kumar, G.E. Prasad, P. Mukhopadhyay, and S. Banerjee, Precipitation of an Intermetallic Phase with Pt2Mo-Type Structure in Alloy 625, Metall. Mater. Trans. A, 1999, 30(1), p 41–52

    Article  Google Scholar 

  6. S.K. Rai, A. Kumar, V. Shankar, and T. Jayakumar, Characterization of Microstructure in Inconel 625 Using X-ray Diffraction Peak Broadening and Lattice Parameter Measurements, Scr. Mater., 2004, 51, p 59–63

    Article  CAS  Google Scholar 

  7. D.R. Muzyka, Controlling Microstructures and Properties of Superalloys Via Use of Precipitated Phase, Met. Eng. Q., 1971, 11, p 12–20

    CAS  Google Scholar 

  8. I. Weiss, F.H. Froes, D. Eylon, and G.E. Welsch, Modification of Alpha Morphology in Ti-6Al-4V by Thermomechanical Processing, Metall. Mater. Trans. A, 1986, 17, p 1935–1947

    Article  Google Scholar 

  9. P.V. Sivaprasad, S. Venugopal, S. Venugopal, V. Maduraimuthu, M. Vasudevan, S.L. Mannan, Y.V.R.K. Prasad, and R.C. Chaturvedi, Validation of Processing Maps for a 15Cr-15Ni-2.2Mo-0.3Ti Austenitic Stainless Steel Using Hot Forging and Rolling Tests, J. Mater. Process. Technol., 2003, 132, p 262–268

    Article  CAS  Google Scholar 

  10. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892

    Article  Google Scholar 

  11. Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 82–88

    Article  Google Scholar 

  12. Y.V.R.K. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, ASM International, Materials Park, OH, 1997, p 12–13

    Google Scholar 

  13. A.K.S.K Kumar, “Criteria for Predicting Metallurgical Instabilities in Processing,” M.Sc. (Eng) thesis, Indian Institute of Science, Bangalore, India, 1987

  14. Y.V.R.K. Prasad, Recent Advances in the Science of Mechanical Processing, Indian J. Technol., 1990, 28, p 435–451

    CAS  Google Scholar 

  15. H. Ziegler, Progress in Solid Mechanics, Vol. 4, North-Holland Pub. Co., Amsterdam, 1963, p 93–113

  16. T. Sakai, Dynamic Recrystallization Microstructures Under Hot Working Conditions, J. Mater. Process. Technol., 1995, 53, p 349–361

    Article  Google Scholar 

  17. C.M. Sellars and W.J. Tegart, Physical Metallurgy of Thermo-Mechanical Processing of Steels and Other Metals, Sci. Rev. Met., 1966, 63, p 731–735

    CAS  Google Scholar 

  18. R. Raj, Development of a Processing Map for Use in Warm-Forming and Hot-Forming Processes, Metall. Trans. A, 1981, 12, p 1089–1097

    Article  CAS  Google Scholar 

  19. Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta Metall., 1984, 32, p 57–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H.T., Liu, R.R., Liu, Z.C. et al. Hot Deformation Characteristics of GH625 and Development of a Processing Map. J. of Materi Eng and Perform 22, 2515–2521 (2013). https://doi.org/10.1007/s11665-013-0558-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0558-3

Keywords

Navigation