Skip to main content
Log in

An Insight into Lüders Deformation Using Advanced Imaging Techniques

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

An investigation to explore the feasibility of simultaneous application of infrared thermography (IRT) and digital image correlation (DIC) for analysis of Lüders deformation is carried out. Physical models and proposed concepts explaining the dynamics of deformation localization associated with Lüders band phenomenon addressing band-formation mechanism, inhomogeneity in stress-strain distribution across the band front, and strain localization following band front propagation are successfully correlated with the thermal and strain evolutions obtained using IRT and DIC. The studies revealed the potential of using these techniques simultaneously in providing an enhanced understanding of micro mechanisms involved in Lüders deformation based on associated macroscopic thermal and strain evolutions in a noncontact, nondestructive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.M. Lomer, The Yield Point Phenomenon in Polycrystalline in Mild Steel, J. Mech. Phys. Solids, 1952, 1, p 64–73

    Article  Google Scholar 

  2. J.F. Butler, Lüders Front Propagation in Low Carbon Steels, J. Mech. Phys. Solids, 1962, 10, p 313–334

    Article  Google Scholar 

  3. D.E. Delwiche and D.W. Moon, Orientation of Lüders Band Fronts, Mater. Sci. Eng., 1971, 7, p 203–207

    Article  Google Scholar 

  4. K. Prewo, J.C.M. Li, and M. Gensamer, Lüders Band Motion in Iron, Metall. Trans., 1972, 3, p 2261–2269

    Article  CAS  Google Scholar 

  5. V.S. Ananthan and E.O. Hall, Macroscopic Aspects of Lüders Band Deformation in Mild Steel, Acta Metall. Mater., 1991, 39, p 3153–3160

    Article  CAS  Google Scholar 

  6. H.B. Sun, F. Yoshida, M. Ohmori, and X. Ma, Effects of Strain Rate on Lüders Band Propagation Velocity and Lüders Strain for Annealed Mild Steel Under Uniaxial Tension, Mater. Lett., 2003, 57, p 4535–4539

    Article  CAS  Google Scholar 

  7. P.J. Worthington and E. Smith, The Formation of Slip Bands in Polycrystalline 3% Silicon Iron in the Pre-yield Microstrain Region, Acta Metall., 1964, 120, p 1277–1281

    Google Scholar 

  8. D.W. Moon and T. Vreeland, The Initiation of Yielding in Silicon-Iron, Acta Metall., 1969, 17, p 989–996

    Article  CAS  Google Scholar 

  9. D.J. Lloyd and L.R. Morris, Lüders Band Deformation in a Fine Grained Aluminium Alloy, Acta Metall., 1977, 25, p 857–861

    Article  CAS  Google Scholar 

  10. S. Kyriakides and J.E. Miller, On the Propagation of Lüders Bands in Steel Strips, J. Appl. Mech., 2000, 67, p 645–654

    Article  CAS  Google Scholar 

  11. J. Zhang and Y. Jiang, Lüders Bands Propagation of 1045 Steel Under Multiaxial Stress State, Int. J. Plast., 2005, 21, p 651–670

    Article  Google Scholar 

  12. J. Friedel, Dislocations, 1st ed., Pergamon Press, Reading, 1967

    Google Scholar 

  13. G.T. Van Rooyen, The Stress and Strain Distribution in a Propagating Lüders Front Accompanying the Yield-Point Phenomenon in Iron, Mater. Sci. Eng., 1968/1969, 3, p 105-117

  14. R. Shabadi, S. Kumar, H.J. Roven, and E.S. Dwarakadasa, Characterisation of PLC Band Parameters Using Laser Speckle Technique, Mater. Sci. Eng. A, 2004, 364, p 140–150

    Article  Google Scholar 

  15. H. Louche and A. Chrysochoos, Thermal and Dissipative Effects Accompanying Lüders Band Propagation, Mater. Sci. Eng. A, 2001, 307, p 15–22

    Article  Google Scholar 

  16. H. Ait-Amokhtar, C. Fressengeas, and S. Boudrahem, The Dynamics of Portevin-Le Chatelier Bands in an Al-Mg Alloy from Infrared Thermography, Mater. Sci. Eng. A, 2008, 488, p 540–546

    Article  Google Scholar 

  17. X. Feng, G. Fisher, R. Zielke, B. Svendsen, and W. Tillmann, Investigation of PLC Band Nucleation in AA5754, Mater. Sci. Eng. A, 2012, 539, p 205–210

    Article  CAS  Google Scholar 

  18. B. Wattrisse, A. Chrysochoos, J.M. Muracciole, and M. Nemoz-Gaillard, Kinematic Manifestation of Localization Phenomena in Steels by Digital Image Correlation, Eur. J. Mech. A, 2001, 20, p 189–211

    Article  Google Scholar 

  19. H. Louche, P. Vacher, and R. Arrieux, Thermal Observation Associated with the Portevin-Le Chatelier Effect in an Al-Mg Alloy, Mater. Sci. Eng. A, 2005, 404, p 188–196

    Article  Google Scholar 

  20. A. Benallal, T. Berstad, T. Borvik, O.S. Hopperstad, I. Koutiri, and R. Nogueira de Codes, An Experimental and Numerical Investigation of the Behaviour of AA5083 Aluminium Alloy in Presence of the Portevin-Le Chatelier Effect, Int. J. Plast., 2008, 24, p 1916–1945

    Article  CAS  Google Scholar 

  21. P.D. Zavattieri, V. Savic, L.G. Hector, Jr., J.R. Fekete, W. Tong, and Y. Xuan, Spatio-Temporal Characteristic of the Portevin-Le Chatelier Effect in Austenitic Steel with Twinning Induced Plasticity, Int. J. Plast., 2009, 25, p 2298–2330

    Article  CAS  Google Scholar 

  22. L. Casarotto, H. Dierke, R. Tutsch, and H. Neuhauser, On Nucleation and Propagation of PLC Bands in an Al-3Mg Alloy, Mater. Sci. Eng. A, 2009, 527, p 132–140

    Article  Google Scholar 

  23. R.N. Mudrock, M.A. Lebyodkin, P. Kurath, A.J. Beaudoin, and T.A. Lebedkina, Strain Rate Fluctuations During Macroscopically Uniform Deformation of a Solution-Strengthened Alloy, Scr. Mater., 2011, 65, p 1093–1096

    Article  CAS  Google Scholar 

  24. R. Nogueira de Codes, O.S. de Hopperstad, O. Engler, O.-G. Lademo, J.D. Embury, and A. Benallal, Spatial and Temporal Characteristics of Propagating Deformation Bands in AA5182 Alloy at Room Temperature, Metall. Mater. Trans. A, 2011, 42A, p 3358–3369

    Article  Google Scholar 

  25. N. Srinivasan, N. Raghu, and B. Venkatraman, Advanced Imaging for Early Prediction and Characterization of Zone of Lüders Band Nucleation Associated with Pre-yield Microstrain, Mater. Sci. Eng. A, 2013, 561, p 203–211

    Article  Google Scholar 

  26. N. Srinivasan, N. Raghu, and B. Venkatraman, Study on Lüders Deformation in Welded Mild Steel Using Infrared Thermography and Digital Image Correlation, Adv. Mater. Res., 2012, 585, p 82–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Elsevier Ltd for giving permission to use Fig. 3 and 8. The constant support and encouragement received from Shri B. Ananthapadmanaban, Head, QAD, IGCAR (India) is gratefully acknowledged. N. Srinivasan would like to thank Mr. S. Raviprakash, Pyrodynamics (India) for his discussions on the DIC results. The authors also acknowledge the experimental assistance extended by Mr. Sukumar, PIED, IGCAR (India) and Mrs. D. Chitra, QAD, IGCAR (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Nagarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarajan, S., Narayanaswamy, R. & Balasubramaniam, V. An Insight into Lüders Deformation Using Advanced Imaging Techniques. J. of Materi Eng and Perform 22, 3085–3092 (2013). https://doi.org/10.1007/s11665-013-0586-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0586-z

Keywords

Navigation