Skip to main content
Log in

Phase Evolution and Thermal Analysis of Nanocrystalline AlCrCuFeNiZn High Entropy Alloy Produced by Mechanical Alloying

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A multi-component nanocrystalline AlCrCuFeNiZn high entropy alloy with 12 nm crystallite size was successfully synthesized using high energy ball milling. The progress of solid solution formation during milling was analyzed using XRD. A major portion of the HEA is observed to be BCC in crystal structure after 30 h of milling. Thermal analysis showed that HEA powders exhibited exponential oxidation characteristics. Thermal analysis showed that low activation energy was sufficient to start recrystallization because of high energy stored in the milled powders. The crystallite size after consolidation is in nanocrystalline range due to the sluggish diffusion of atoms and nanotwinning. After consolidation, the crystallite size is around 79 nm. Samples sintered at 850 °C for 2 h exhibited high hardness values of 700 ± 15 HV1.0, major volume fraction of the phases are having FCC crystal structure along with a minor phase having BCC crystal structure. Due to positive enthalpy mixing of Cu with other elements, decomposition of BCC to new FCC phases occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Suryanarayana, Non-equilibrium Processing of Materials, 1st ed., Pergamon Materials Series, Oxford, 1999

    Google Scholar 

  2. J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, High Entropy Alloys—A New Era of Exploitation, Mater. Sci. Forum., 2007, 560, p 1–9

    Article  CAS  Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.T. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303

    Article  CAS  Google Scholar 

  4. H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48(1), p 1–29

    CAS  Google Scholar 

  5. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1–2), p 1–184

    Article  CAS  Google Scholar 

  6. S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty, Hot Consolidation and Mechanical Properties of Nanocrystalline Equiatomic AlFeTiCrZnCu High Entropy Alloy After Mechanical Alloying, J. Mater. Sci., 2010, 45(19), p 5158–5163

    Article  CAS  Google Scholar 

  7. Z.Z. Fang, Sintering of Advanced Materials, Woodhead Publishing, Cambridge, 2010

    Book  Google Scholar 

  8. T.R. Malow and C.C. Koch, Grain Growth in Nanocrystalline Iron Prepared by Mechanical Attrition, Acta Mater., 1997, 45(5), p 2177–2186

    Article  CAS  Google Scholar 

  9. V.D. Vikram, B.B. Panigrahi, M.M. Godkhindi, T.R. Rama Mohan, and P. Ramakrishnan, Dilatometry of Attrition Milled Nanocrystalline Titanium Powders, Mater. Res. Bull., 2006, 41(11), p 2111–2122

    Article  Google Scholar 

  10. C. Kittel, Introduction to Solid State Physics, 7th ed., Wiley, New York, 1996

    Google Scholar 

  11. D.A. Porter and K.E. Easterling, Phase Transformation in Metals and Alloys, 2nd ed., Chapman & Hall, London, 1992

    Book  Google Scholar 

  12. A. Takeuchi and A. Inoue, Mixing Enthalpy of Liquid Phase Calculated by Miedema’s Scheme and Approximated with Sub-regular Solution Model for Assessing Forming Ability of Amorphous and Glassy Alloys, Intermetallics, 2010, 18(9), p 1779–1789

    Article  CAS  Google Scholar 

  13. C. Bansal, Z.Q. Gao, L.B. Hong, and B. Fultz, Phases and Phase Stabilities of Fe3X Alloys (X = Al, As, Ge, In, Sb, Si, Sn, Zn) Prepared by Mechanical Alloying, J. Appl. Phys., 1994, 76(10), p 5961–5966

    Article  CAS  Google Scholar 

  14. ThH de Keijser, J.I. Langford, E.J. Mittemeijer, and A.B.P. Vogels, Use of the Voigt Function in a Single-Line Method for the Analysis of X-ray Diffraction Line Broadening, J. Appl. Crystallogr., 1982, 15, p 308–314

    Article  Google Scholar 

  15. F.A. Mohamed, A Dislocation Model for the Minimum Grain Size Obtainable by Milling, Acta Mater., 2003, 51(14), p 4107–4119

    Article  CAS  Google Scholar 

  16. J.Y. Huang, Y.D. Yu, Y.K. Wu, D.X. Li, and H.Q. Ye, Microstructure and Nanoscale Composition Analysis of the Mechanical Alloying of FexCu100−x (X = 16, 60), Acta Mater., 1997, 45(1), p 113–124

    Article  CAS  Google Scholar 

  17. S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and P.V. Satyanarayana, X-ray Peak Broadening Analysis of AA 6061100−x-x wt.% Al2O3 Nanocomposite Prepared by Mechanical Alloying, Mater. Charact., 2011, 62(7), p 661–672

    Article  CAS  Google Scholar 

  18. Y.H. Zhao, H.W. Shang, and K. Lu, Microstructure Evolution and Thermal Properties in Nanocrystalline Fe During Mechanical Attrition, Acta Mater., 2001, 49(2), p 365–375

    Article  CAS  Google Scholar 

  19. S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and Vijay Kumar Iyer, Effect of Strengthening Mechanisms on Cold Workability and Instantaneous Strain Hardening Behavior During Grain Refinement of AA 6061-10 wt.% TiO2 Composite Prepared by Mechanical Alloying, J. Alloys Compd., 2010, 507(1), p 236–244

    Article  CAS  Google Scholar 

  20. H.X. Sui, M. Zhu, M. Qi, G.B. Li, and D.Z. Yang, The Enhancement of Solid Solubility Limits of AlCo Intermetallic Compound by High-Energy Ball Milling, J. Appl. Phys., 1992, 71(6), p 2945–2949

    Article  CAS  Google Scholar 

  21. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, Characterization of Nanocrystalline CoCrFeNiTiAl High-Entropy Solid Solution Processed by Mechanical Alloying, J. Alloys Compd., 2010, 495(1), p 33–38

    Article  CAS  Google Scholar 

  22. H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), p 1702–1706

    Article  CAS  Google Scholar 

  23. L.W. Crane, P.J. Dynes, and D.H. Kaelble, Analysis of Curing Kinetics in Polymer Composites, J. Polym. Sci. Polym. Lett. Ed., 1973, 11, p 533–540

    Article  CAS  Google Scholar 

  24. J.M. Criado and A. Ortega, Non-isothermal Crystallization Kinetics of Metal Glasses: Simultaneous Determination of Both the Activation Energy and the Exponent n of the JMA Kinetic Law, Acta Mater., 1987, 35(7), p 1715–1721

    Article  CAS  Google Scholar 

  25. B.B. Panigrahi, Sintering and Grain Growth Kinetics of Ball Milled Nanocrystalline Nickel Powder, Mater. Sci. Eng. A, 2007, 460–461, p 7–13

    Google Scholar 

  26. J.R. Groza, Nanocrystalline Powder Consolidation Methods, Nanostructured Materials: Processing, Properties and Applications, 2nd ed., C.C. Koch, Ed., William Andrew Publishing, New York, 2002, p 173–217

    Google Scholar 

  27. M.S. Senthil Saravanan, K. Sivaprasad, P. Susila, and S.P. Kumaresh Babu, Anisotropy Models in Precise Crystallite Size Determination of Mechanically Alloyed Powders, Physica B, 2011, 406(2), p 165–168

    Article  CAS  Google Scholar 

  28. M.O. Humienik and J. Mozejko, Thermodynamic Functions of Activated Complexes Created in Thermal Decomposition Processes of Sulphates, Thermochim. Acta., 2000, 344(1–2), p 73–79

    Article  Google Scholar 

  29. A.A. Frost and R.G. Pearson, Kinetics and Mechanisms, 2nd ed., Wiley, New York, 1961

    Google Scholar 

  30. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Microstructure and Mechanical Properties of CoCrFeNiTiAlx High-Entropy Alloys, Mater. Sci. Eng. A., 2009, 508(1–2), p 214–219

    Google Scholar 

  31. B. Ren, Z.X. Liu, B. Cai, M.X. Wang, and L. Shi, Aging Behavior of a CuCr2Fe2NiMn High-Entropy Alloy, Mater. Des., 2012, 33, p 121–126

    Article  CAS  Google Scholar 

  32. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Tensile Properties of an AlCrCuNiFeCo High-Entropy Alloy in As-Cast and Wrought Conditions, Mater. Sci. Eng. A, 2012, 533, p 107–118

    Article  CAS  Google Scholar 

  33. H.S. Khatak and B. Raj, Corrosion of Austenitic Stainless Steels: Mechanism Mitigation and Monitoring, Woodhead Publishing, Cambridge, 2002

    Book  Google Scholar 

  34. C.M. Lin and H.L. Tsai, Evolution of Microstructure, Hardness, and Corrosion Properties of Al0.5CoCrFeNi Alloy, Intermetallics, 2011, 19(3), p 288–294

    Article  CAS  Google Scholar 

  35. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Decomposition in Multi-component AlCoCrCuFeNi High-Entropy Alloy, Acta Mater., 2011, 59(1), p 182–190

    Article  CAS  Google Scholar 

  36. T.T. Shun, C.H. Hung, and C.F. Lee, The Effects of Secondary Elemental Mo or Ti Addition in Al0.3CoCrFeNi High-Entropy Alloy on Age Hardening at 700°C, J. Alloys Compd., 2010, 495(1), p 55–58

    Article  CAS  Google Scholar 

  37. C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, and S.K. Chen, Deformation and Annealing Behaviors of High-Entropy Alloy Al0.5CoCrCuFeNi, J. Alloys Compd., 2009, 486(1–2), p 427–435

    Article  CAS  Google Scholar 

  38. E.E. Danaf, S.R. Kalidindi, and R.D. Doherty, Influence of Grain Size and Stacking-Fault Energy on Deformation Twinning in FCC Metals, Metall. Mater. Trans. A, 1999, 30(5), p 1223–1233

    Article  Google Scholar 

  39. Y. Zhang, N.R. Tao, and K. Lu, Effect of Stacking-Fault Energy on Deformation Twin Thickness in Cu–Al Alloys, Scripta Mater., 2009, 60(4), p 211–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sivaprasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koundinya, N.T.B.N., Sajith Babu, C., Sivaprasad, K. et al. Phase Evolution and Thermal Analysis of Nanocrystalline AlCrCuFeNiZn High Entropy Alloy Produced by Mechanical Alloying. J. of Materi Eng and Perform 22, 3077–3084 (2013). https://doi.org/10.1007/s11665-013-0580-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0580-5

Keywords

Navigation