Skip to main content
Log in

Powder metallurgy of Al0.1CoCrFeNi high-entropy alloy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Al0.1CoCrFeNi high-entropy alloy (HEA) was synthesized successfully from elemental powders by mechanical alloying (MA) and subsequent consolidation by spark plasma sintering (SPS). The alloying behavior, microstructure, and mechanical properties of the HEA were assessed using X-ray diffraction, electron microscope, hardness, and compression tests. MA of the elemental powders for 8 h has resulted in a two-phased microstructure: α-fcc and β-bcc phases. On the other hand, the consolidated bulk Al0.1CoCrFeNi-HEA sample reveals the presence of α-fcc and Cr23C6 phases. The metastable β-bcc transforms into a stable α-fcc during the SPS process due to the supply of thermal energy. The hardness of the consolidated bulk HEA samples is found to be 370 ± 50 HV0.5, and the yield and ultimate compressive strengths are found to be 1420 and 1600 MPa, respectively. Such high strength in the Al0.1CoCrFeNi HEA is attributed to the grain refinement strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
TABLE 1.
Figure 4:
Figure 5:
TABLE 2.
Figure 6:
Figure 7:
Figure 8:

Similar content being viewed by others

References

  1. E.P. George, D. Raabe, and R.O. Ritchie: High-entropy alloys. Nat. Rev. Mater. 4, 515 (2019).

    Article  CAS  Google Scholar 

  2. E.P. George, W.A. Curtin, and C.C. Tasan: High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 188, 435 (2020).

    Article  CAS  Google Scholar 

  3. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    Article  CAS  Google Scholar 

  4. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley: Exploration and development of high entropy alloys for structural applications. Entropy 16, 494 (2014).

    Article  CAS  Google Scholar 

  5. R. Sokkalingam, K. Sivaprasad, M. Duraiselvam, V. Muthupandi, and K.G. Prashanth: Novel welding of Al0.5CoCrFeNi high-entropy alloy: Corrosion behavior. J. Alloys Compd. 817, 153163 (2020).

    Article  CAS  Google Scholar 

  6. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  7. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213 (2004).

    Article  CAS  Google Scholar 

  8. C. Sajithbabu, K. Sivaprasad, V. Muthupandi, and J.A. Szpunar: Characterization of nanocrystalline AlCoCrCuNiFeZn high entropy alloy produced by mechanical alloying. Procedia Mater. Sci. 5, 1020 (2014).

    Article  CAS  Google Scholar 

  9. S. Gangireddy, B. Gwalani, V. Soni, R. Banerjee, and R.S. Mishra: Contrasting mechanical behavior in precipitation hardenable AlxCoCrFeNi high entropy alloy microstructures: Single phase FCC vs. dual phase FCC-BCC. Mater. Sci. Eng. A 739, 158 (2019).

    Article  CAS  Google Scholar 

  10. N. Kumar, Q. Yinh, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Dohetry, and K.C. Cho: High strain-rate compressive deformation behavior of Al0.1CrFeCoNi high entropy alloy. Mater. Des. 86, 598 (2015).

    Article  CAS  Google Scholar 

  11. S. Gangireddy, B. Gwalani, K. Liu, R. Banerjee, and R.S. Mishra: Microstructures with extraordinary dynamic work hardening and strain rate sensitivity in Al0.3CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 734, 42 (2018).

    Article  CAS  Google Scholar 

  12. S. Gangireddy, L. Kaimiao, B. Gwalani, and R.S. Mishra: Microstructural dependence of strain rate sensitivity in thermomechanically processed Al0.1CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 727, 148 (2018).

    Article  CAS  Google Scholar 

  13. W.R. Wang, W.L. Wang, and J.W. Yeh: Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 589, 143 (2014).

    Article  CAS  Google Scholar 

  14. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).

    Article  CAS  Google Scholar 

  15. C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, and S.Y. Chang: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).

    Article  Google Scholar 

  16. R. Sokkalingam, S. Mishra, S.R. Cheethirala, V. Muthupandi, and K. Sivaprasad: Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A 48, 3630 (2017).

    Article  CAS  Google Scholar 

  17. D.Y. Li and Y. Zhang: The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70, 24 (2016).

    Article  CAS  Google Scholar 

  18. Y. Sun, P. Chen, L. Liu, M. Yan, X. Wu, C. Yu, and Z. Liu: Local mechanical properties of AlxCoCrCuFeNi high entropy alloy characterized using nanoindentation. Intermetallics 93, 85 (2018).

    Article  CAS  Google Scholar 

  19. R. Sokkalingam, V. Muthupandi, K. Sivaprasad, and K.G. Prashanth: Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel. J. Mater. Res. 34, 2683 (2019).

    Article  CAS  Google Scholar 

  20. Y. Lv, R. Hu, Z. Yao, J. Chen, D. Xu, Y. Liu, and X. Fan: Cooling rate effect on microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys. Mater. Des. 132, 292 (2017).

    Article  CAS  Google Scholar 

  21. J. Karimi, P. Ma, Y.D. Jia, and K.G. Prashanth: Linear patterning of high entropy alloy by additive manufacturing. Manuf. Lett. 24, 9 (2020).

    Article  Google Scholar 

  22. Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw, and B. Yang: Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corr. Sci. 133, 120 (2018).

    Article  CAS  Google Scholar 

  23. R. Sokkalingam, K. Sivaprasad, M. Duraiselvam, V. Muthupandi, and K.G. Prashanth: Novel welding of Al0.5CoCrFeNi high-entropy alloy: Corrosion behavior. J. Alloys Compd. 817, 153163 (2020).

    Article  CAS  Google Scholar 

  24. J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, and D. Fabijanic: The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear 428–429, 32 (2019).

    Article  CAS  Google Scholar 

  25. N. Kumar, M. Komarasamy, P. Nelaturu, Z. Tang, P.K. Liaw, and R.S. Mishra: Friction stir processing of a high entropy alloy Al0.1CoCrFeNi. JOM 67, 1007 (2015).

    Article  CAS  Google Scholar 

  26. R. Sokkalingam, P. Mastanaiah, V. Muthupandi, K. Sivaprasad, and K.G. Prashanth: Electron beam welding of high entropy alloy and stainless steel: Microstructure and mechanical properties. Mater. Manuf. Process. (2020). doi: 10.1080/10426914.2020.1802045

    Google Scholar 

  27. S.Q. Xia, X. Yang, T.F. Yang, S. Liu, and Y. Zhang: Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM 67, 2340 (2015).

    Article  CAS  Google Scholar 

  28. T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Fang, Y. Zhang, J. Xue, S. Yan, and Y. Wang: Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation. Sci. Rep. 6, 32146 (2016).

    Article  CAS  Google Scholar 

  29. R.B. Nair, H.S. Arora, S. Mukherjee, S. Singh, H. Singh, and H.S. Grewal: Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy. Ultrason. Sonochem. 41, 252 (2018).

    Article  CAS  Google Scholar 

  30. R. Li, J. Hou, W. Yang, H. Yu, Q. Wang, and Z. Zhang: Strengthening mechanism and yield strength prediction of cold-drawn commercially pure aluminum wire. IOP Conf. Ser. Mater. Sci. Eng. 382, 022094 (2018).

  31. S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, and P.K. Liaw: Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy. Mater. Res. Lett. 5, 276 (2017).

    Article  CAS  Google Scholar 

  32. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E.J. Lavernia: Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59 (2016).

    Article  CAS  Google Scholar 

  33. Z. Wang, R.T. Qu, S. Scudino, B.A. Sun, K.G. Prashanth, D.V. Louzguine-Luzgin, M.W. Chen, Z.F. Zhang, and J. Eckert: Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Mater. 7, e229 (2015).

    Article  CAS  Google Scholar 

  34. T. Maity, K.G. Prashanth, O. Balci, J.T. Kim, T. Schoeberl, Z. Wang, and J. Eckert: Influence of severe straining and strain rate on the evolution of dislocation structures during micro-/nanoindentatoin in high entropy lamellar eutectics. Int. J. Plasticity 109, 121 (2018).

    Article  CAS  Google Scholar 

  35. K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Loeber, Z. Wang, A.K. Chaubey, U. Kuehn, and J. Eckert: Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng. A 590, 153 (2014).

    Article  CAS  Google Scholar 

  36. X.D. Xu, P. Liu, A. Hirata, S.X. Song, T.G. Nieh, and M.W. Chen: Microstructural origins for a strong and ductile Al0.1CoCrFeNi high-entropy alloy with ultrafine grains. Materialia 4, 395 (2018).

    Article  Google Scholar 

  37. Z. Wang, J. Tan, S. Scudino, B.A. Sun, R.T. Qu, J. He, K.G. Prashanth, W.W. Zhang, Y.Y. Li, and J. Eckert: Mechanical behavior of Al-based matrix composites reinforced with Mg58Cu28.5Gd11Ag2.5 metallic glass. Adv. Powder Technol. 25, 635 (2014).

    Article  CAS  Google Scholar 

  38. Z. Wang, K.G. Prashanth, S. Scudino, A.K. Chaubey, D.J. Sordelet, W.W. Zhang, Y.Y. Li, and J. Eckert: Tensile properties of Al matrix composites reinforced with in situ devitrified Al84Gd6Ni7Co3 glassy particles. J. Alloys Compd. 586, S419 (2014).

    Article  CAS  Google Scholar 

  39. F. Ali, S. Scudino, G. Liu, V.C. Srivastava, N.K. Mukhopadhyay, M. Samadi Khoshkhoo, K.G. Prashanth, V. Uhlenwinkel, M. Calin, and J. Eckert: Modeling the strengthening effect of Al–Cu–Fe quasicrystalline particles in Al-based metal matrix composites. J. Alloys Compd. 536S, S130 (2012).

    Article  CAS  Google Scholar 

  40. K.G. Prashanth, S. Scudino, A.K. Chaubey, L. Loeber, P. Wang, H. Attar, F.P. Schimansky, F. Pyczak, and J. Eckert: Processing of Al-12Si-TNM composites by selective laser melting and evaluation of compressive and wear properties. J. Mater. Res. 31, 55 (2016).

    Article  CAS  Google Scholar 

  41. N. Singh, S. Banerjee, O. Parkash, and D. Kumar: Tribological and corrosion behavior of (100-x)(Fe70Ni30)-(x)ZrO2 composites synthesized by powder metallurgy. Mater. Chem. Phys. 205, 261 (2018).

    Article  CAS  Google Scholar 

  42. K.G. Prashanth, S. Scudino, and J. Eckert: Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Mater. 126, 25 (2017).

    Article  CAS  Google Scholar 

  43. K.G. Prashanth, S. Kolla, and J. Eckert: Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting—selection guidelines. Materials 10, 672 (2017).

    Article  CAS  Google Scholar 

  44. K.G. Prashanth, H. Shakur Shahabi, H. Attar, V.C. Srivastava, N. Ellendt, V. Uhlenwinkel, J. Eckert, and S. Scudino: Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Addit. Manuf. 6, 1 (2015).

    CAS  Google Scholar 

  45. N. Singh, R. Ummethala, P. Hameed, R. Sokkalingam, and K.G. Prashanth: Competition between densification and microstructure of functional materials by selective laser melting. Mater. Des. Process. Comm. 2, e146 (2020).

    CAS  Google Scholar 

  46. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  47. K.G. Prashanth: Influence of mechanical activation on decomposition of titanium hydride. Mater. Manuf. Process. 25, 974 (2010).

    Article  CAS  Google Scholar 

  48. Z. Wang, K.G. Prashanth, S. Scudino, J. He, W.W. Zhang, Y.Y. Li, M. Soica, G. Vaughan, D.J. Sordelet, and J. Eckert: Effect of ball milling on structure and thermal stability of Al84Gd6Ni7Co3 glassy powders. Intermetallics 46, 97 (2014).

    Article  CAS  Google Scholar 

  49. T. Maity, K.G. Prashanth, A. Janda, J.T. Kim, F. Spieckermann, and J. Eckert: Mechanism of high-pressure torsion-induced shear banding and lamellar thickness saturation in Co–Cr–Fe–Ni–Ng high-entropy composites. J. Mater. Res. 34, 2672 (2019).

    Article  CAS  Google Scholar 

  50. T. Maity, K.G. Prashanth, O. Balci, Z. Wang, Y.D. Jia, and J. Eckert: Plastic deformation mechanisms in severely strained eutectic high entropy composites explained via strain rate sensitivity and activation volume. Comp. Part B 150, 7 (2018).

    Article  CAS  Google Scholar 

  51. P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Lia, and R.P. Liu: Effects of high-pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Mater. Sci. Eng. A 655, 283 (2016).

    Article  CAS  Google Scholar 

  52. A.K. Chaubey, S. Scudino, K.G. Prashanth, and J. Eckert: Microstructure and mechanical properties of Mg–Al-based alloy modified with cerium. Mater. Sci. Eng. A 625, 46 (2015).

    Article  CAS  Google Scholar 

  53. E.Y. Gutmanas: Materials with fine microstructure by advanced powder metallurgy. Prog. Mater. Sci. 34, 261 (1990).

    Article  CAS  Google Scholar 

  54. D. Marko, K.G. Prashanth, S. Scudino, Z. Wang, N. Ellendt, V. Uhlenwinkel, and J. Eckert: Al-based metal matrix composites reinforced with Fe49.9Co35.1Nb7.7B4.5Si2.8 glassy powder: Mechanical behavior under tensile loading. J. Alloys Compd. 615, S382 (2014).

    Article  CAS  Google Scholar 

  55. A.K. Chaubey, S. Scudino, M.S. Khoshkhoo, K.G. Prashanth, N.K. Mukhopadhyay, B.K. Mishra, and J. Eckert: High-strength ultrafine grain Mg–7.4%Al alloy synthesized by consolidation of mechanically alloyed powders. J. Alloys Compd. 610, 456 (2014).

    Article  CAS  Google Scholar 

  56. P. Molaiyan and R. Witter: Mechanochemical synthesis of solid-state electrolyte Sm1−xCaxF3−x for batteries and other electrochemical devices. Mater. Lett. 244, 22 (2019).

    Article  CAS  Google Scholar 

  57. K.G. Prashanth and B.S. Murty: Production, kinetic study and properties of Fe-based glass and its composites. Mater. Manuf. Process. 25, 592 (2010).

    Article  CAS  Google Scholar 

  58. P. Susila, D. Sturm, M. Heilmaier, B.S. Murty, and V.S. Sarma: Effect of yttria particle size on the microstructure and compression creep properties of nanostructured oxide dispersion strengthened ferritic (Fe–12Cr–2W–0.5Y2O3) alloy. Mater. Sci. Eng. A 528, 4579 (2011).

    Article  CAS  Google Scholar 

  59. K.G. Prashanth, S. Scudino, K.B. Surreddi, M. Sakaliyska, B.S. Murty, and J. Eckert: Crystallization kinetics of Zr65Ag5Cu12.5Ni10Al7.5 glassy powders produced by ball milling of pre-alloyed ingots. Mater. Sci. Eng. A 513, 279 (2009).

    Article  CAS  Google Scholar 

  60. X. Liu, L. Zhang, and Y. Xu: Microstructure and mechanical properties of graphene reinforced Fe50Mn30Co10Cr10 high-entropy alloy composites synthesized by MA and SPS. Appl. Phys. A 123, 567 (2017).

    Article  CAS  Google Scholar 

  61. P. Molaiyan and R. Witter: Crystal phase and surface defect driven synthesis of Pb1−xSnxF2 solid solution electrolyte for fluoride ion batteries. J. Electroanal. Chem. 845, 154–159 (2019).

    Article  CAS  Google Scholar 

  62. P.V. Satyanarayana, R. Sokkalingam, P.K. Jena, K. Sivaprasad, and K.G. Prashanth: Tungsten matrix composite reinforced with CoCrFeMnNi high-entropy alloy: Impact of processing routes on microstructure and mechanical properties. Metals 9, 992 (2019).

    Article  CAS  Google Scholar 

  63. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, and M. Herrmann: Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830 (2014).

    Article  CAS  Google Scholar 

  64. Z.Y. Hu, Z.H. Zhang, X.W. Cheng, F.C. Wang, Y.F. Zhang, and S.L. Li: A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Mater. Des. 191, 108662 (2020).

    Article  CAS  Google Scholar 

  65. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, and Z. Fu: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2015).

    Article  CAS  Google Scholar 

  66. Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, and H.R. Ammar: Synthesis, structure, and mechanical response of Cr0.26Fe0.24Al0.5 and Cr0.15Fe0.14Al0.30Cu0.13Si0.28 nanocrystallite entropy alloys. Adv. Powder Technol. 31, 2161 (2020).

    Article  CAS  Google Scholar 

  67. Y.L. Chen, Y.H. Hu, C.A. Hsieh, J.W. Yeh, and S.K. Chen: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481, 768 (2009).

    Article  CAS  Google Scholar 

  68. Y. Xie, H. Cheng, Q. Tang, W. Chen, W. Chen, and P. Dai: Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics 93, 228 (2018).

    Article  CAS  Google Scholar 

  69. S. Praveen, A. Anupam, T. Sirasani, B.S. Murty, and R.S. Kottada: Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering. Trans. Indian Inst. Met. 66, 369 (2013).

    Article  CAS  Google Scholar 

  70. S. Praveen, A. Anupam, R. Tilak, and R.S. Kottada: Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater. Chem. Phys. 210, 57 (2018).

    Article  CAS  Google Scholar 

  71. H. Cheng, W. Chen, X. Liu, Q. Tang, Y. Xie, and P. Dai: Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy. Mater. Sci. Eng. A 719, 192 (2018).

    Article  CAS  Google Scholar 

  72. R.M. Pohan, B. Gwalani, J. Lee, T. Alam, J.Y. Hwang, H.J. Ryu, R. Banerjee, and S.H. Hong: Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 62 (2018).

    Article  CAS  Google Scholar 

  73. M. Vaidya, G.M. Muralikrishna, and B.S. Murty: High-entropy alloys by mechanical alloying: A review. J. Mater. Res. 34, 664 (2019).

    Article  CAS  Google Scholar 

  74. L. Rogal, Z. Szklarz, P. Bobrowski, D. Kalita, G. Garzeł, A. Tarasek, M. Kot, and M. Szlezynger: Microstructure and mechanical properties of Al–Co–Cr–Fe–Ni base high entropy alloys obtained using powder metallurgy. Met. Mater. Int. 25, 930 (2019).

    Article  CAS  Google Scholar 

  75. D. Wen, B. Jiang, Q. Wang, F. Yu, X. Li, R. Tang, R. Zhang, G. Chen, and C. Dong: Influences of Mo/Zr minor-alloying on the phase precipitation behavior in modified 310S austenitic stainless steels at high temperatures. Mater. Des. 128, 34 (2017).

    Article  CAS  Google Scholar 

  76. F. Peyrouzet, D. Hachet, R. Soulas, C. Navone, S. Godet, and S. Gorsse: Selective laser melting of Al0.3CoCrFeNi high-entropy alloy: Printability, microstructure, and mechanical properties. JOM 71, 3443 (2019).

    Article  CAS  Google Scholar 

  77. Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, and H.R. Ammar: Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: A review. Met. Mater. Int. 26, 1099 (2020).

    Google Scholar 

  78. R. Sriharitha, B.S. Murty, and R.S. Kottada: Thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J. Alloys Compd. 583, 419 (2014).

    Article  CAS  Google Scholar 

  79. B. Gwalani, R.M. Pohan, J. Lee, B. Lee, R. Banerjee, H.J. Ryu, and S.H. Hong: High-entropy alloy strengthened by in situ formation of entropy-stabilized nano-dispersoids. Sci. Rep. 8, 14085 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Estonian Research Council through the projects IUT 19-29 and PRG 665.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katakam Sivaprasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokkalingam, R., Tarraste, M., Surreddi, K.B. et al. Powder metallurgy of Al0.1CoCrFeNi high-entropy alloy. Journal of Materials Research 35, 2835–2847 (2020). https://doi.org/10.1557/jmr.2020.272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.272

Navigation