Skip to main content
Log in

Optimization of saturation current density of PECVD SiN coated phosphorus diffused emitters using neural network modeling

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Emitter surface passivation by low temperature plasma enhanced chemical vapor deposition (PECVD) silicon nitride is investigated and optimized in this paper. We have found that the saturation current density of a 90±10 μ/sq phosphorus diffused emitter with Ns ≈3 x 1019 and Xj ≈0.3 µm can be lowered by a factor of eight by appropriate PECVD silicon nitride deposition and photoassisted anneal. PECVD silicon nitride deposition alone reduces the emitter saturation density (Joe) by about a factor of two to three, and a subsequent photoanneal at temperatures ≥350°C reduces Joe by another factor of three. In spite of the larger flat band shift for direct PECVD silicon nitride coating, the silicon nitride induced surface passivation is found to be about a factor of two inferior to the thermal oxide plus PECVD silicon nitride passivation due to higher interface state density at the SiN/SiO2 interface compared to SiO2/Si interface. A combination of statistical experimental design and neural network modeling is used to show quantitatively that lower radio frequency power, higher substrate temperature, and higher reactor pressure during the PECVD deposition can reduce the Joe of the silicon nitride coated emitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Wang, J. Zhao, S.R. Wenham and M. A. Green, Appl. Phys. Lett. 64, 199 (1994).

    Article  Google Scholar 

  2. J. Zhao, A. Wang, P. Altermatt and M.A. Green, Appl. Phys. Lett. 66, 3636 (1995).

    Article  CAS  Google Scholar 

  3. R.R. King, R.A. Sinton and R.M. Swanson, Appl. Phys. Lett. 54, 15 (1989).

    Article  CAS  Google Scholar 

  4. A.W. Blakers and M.A. Green, Appl. Phys. Lett. 47, 818 (1985).

    Article  CAS  Google Scholar 

  5. R.A. Sinton, R.R. King and R.M. Swanson, Proc. 4th IEEE Photovolt, sci. Eng. Conf., 638 (1989).

  6. M. Spitzer and C.J. Keavney, Proc. 18th IEEE Photovolt, special. Conf. 43 (1985).

  7. D.E. Kane and R.M. Swanson, Proc. 18th IEEE Photovolt. Special. Conf. 578 (1985).

  8. M.A. Green, A.W. Blakers, Shijiqun, E.M. Keller and S.R. Wenham, Appl. Phys. Lett. 44, 1163 (1984).

    Article  CAS  Google Scholar 

  9. R. Hezel and K. Jaeger, J. Electrochem. Soc. 136,518 (1989).

    Article  CAS  Google Scholar 

  10. D.S. Ruby and J.D. Levine, Proc. 11th EC Photovoltaic Solar Energy Conf., 385 (1992).

  11. Z. Chen, S.K. Pang, K. Yasutake and A. Rohatgi, J. Appl. Phys. 74, 2856 (1993).

    Article  CAS  Google Scholar 

  12. A.A. Bright, J. Bateyand, E. Tierney,App.Phys.Lett. 58,619 (1991).

    Article  CAS  Google Scholar 

  13. T. Yasuda, Y. Ma, S. Habermehl and G. Lucovsky,Appl. Phys. Lett. 60, 431(1992).

    Article  Google Scholar 

  14. W.M. Landford and M. J. Rand, J. Appl. Phys. 49,2473 (1978).

    Article  Google Scholar 

  15. A. Rohatgi, Z. Chen, P. Sana, N. Evers,P. Lolgen, R.A. Steeman, Optoelectronics-Devices and Technologies 9, 523 (1994).

    CAS  Google Scholar 

  16. To be published, IEEE Trans. Semi. Manufac. May 1996 by S. Han, L. Cai, G. May and A. Rohatgi.

  17. C. Box, W. Hunter and J. Hunter, Statistics for Experimenters, (New York, Wiley, 1978).

    Google Scholar 

  18. G.E.P. Box, W.G. Hunter and J.S. Hunter, Statistics for Experimenters, (New York: John Wiley & Sons, 1978).

    Google Scholar 

  19. D.E. Kane and R.M. Swanson, Proc. 18th IEEE Photovolt. Special. Conf., 578 (1985).

  20. R.R. King, R.A. Sinton and R.M. Swanson, IEEE Trans. Electron Dev. 17, 365 (1990).

    Article  Google Scholar 

  21. D.E. Kane and R.M. Swanson, 18th IEEE PVSC, 578(1985).

  22. G. May, J. Huang and C. Spanos, IEEE Trans. Semi. Manufac., 4, 83 (1991).

    Article  Google Scholar 

  23. C. Himmel and G. May, IEEE Trans. Semi. Manufac. 6,103 (1993).

    Article  Google Scholar 

  24. C. Bose and H. Lord, Applications of Artfiicial Neural Networks, (SPIE, 1993), p. 521.

  25. R. Lippman, IEEE ASSP Mag. Apr. 1987.

  26. D. Rumelhart and J. McClelland, Parallel Distributed Processing, 1. Cambridge: MIT Press, 1986.

    Google Scholar 

  27. F. Nadi, UC-Berkeley ERL Memo. No. UCB/ERL M89/123, Nov. 1986.

  28. K. Yasutake, Z. Chen, S.K. Pang and A. Rohatgi, J. Appl. Phys. 75, 48 (1994).

    Article  Google Scholar 

  29. A.G. Aberle and R. Hezel, to be published in 25th PVSC Proc. 1996. $

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, L., Han, S., May, G. et al. Optimization of saturation current density of PECVD SiN coated phosphorus diffused emitters using neural network modeling. J. Electron. Mater. 25, 1784–1789 (1996). https://doi.org/10.1007/s11664-996-0036-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-996-0036-x

Key words

Navigation