Skip to main content
Log in

Investigation of ICPECVD Silicon Nitride Films for HgCdTe Surface Passivation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we report results of a study of SiN x thin films for surface passivation of HgCdTe epitaxial layers. The hydrogenated amorphous SiN x films under study were deposited by a SENTECH SI500D inductively coupled plasma-enhanced chemical vapor deposition (ICPECVD) system with a high-density and low-ion-energy plasma source at relatively low substrate temperatures (80°C to 100°C). A series of SiN x films were first deposited on CdTe/GaAs and Si substrates under different deposition conditions to examine the influence of ICP power, deposition temperature, and NH3/SiH4 ratio on properties of the SiN x films. To investigate SiN x deposition conditions suitable for surface passivation of HgCdTe, the SiN x /n-Hg0.68Cd0.32Te interface characteristics were investigated employing capacitance–voltage measurements, and the corresponding interface trap densities D it were extracted from the high-frequency and low-frequency characteristics. Analysis of SiN x /n-Hg0.68Cd0.32Te metal–insulator–semiconductor (MIS) structures indicated that Si-rich SiN x films deposited at 100°C by ICPECVD exhibit electrical characteristics suitable for surface passivation of HgCdTe-based devices, that is, interface trap densities in the range of mid-1010 cm−2 eV−1 and fixed negative interface charge densities of ∼1011 cm−2. In addition, the relationship between bond concentration and surface passivation performance has been explored based on infrared (IR) absorbance spectra. The Si–H and N–H bond concentrations were found to be directly correlated with passivation performance, such that SiN x films with a combination of high [Si–H] and low [N–H] bond concentrations were found to be suitable as electrical passivation layers on HgCdTe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nemirovsky and G. Bahir, J. Vac. Sci. Technol. A 7, 450 (1989).

    Article  Google Scholar 

  2. Y. Nemirovsky and N. Amir, Surfaces/interfaces of narrow-gap II-VI compounds.Narrow-gap II-VI Compounds for Optoelectronic and Electromagnetic Applications, 3rd ed., ed. P. Capper (London: Chapman & Hall, 1997), p. 291

    Chapter  Google Scholar 

  3. N.N. Kajihara, N.G. Sudo, N.Y. Miyamoto, and N.K. Tanikawa, J. Electrochem. Soc. 135, 1252 (1988).

    Article  Google Scholar 

  4. G.G. Sudo, G.N. Kajihara, G.Y. Miyamoto, and G.K. Tanikawa, Appl. Phys. Lett. 51, 1521 (1987).

    Article  Google Scholar 

  5. R.J. Westerhout, C.A. Musca, J. Antoszewski, J.M. Dell, and L. Faraone, J. Electron. Mater. 36, 884 (2007).

    Article  Google Scholar 

  6. F. Ren, D.N. Buckley, K.M. Lee, S.J. Pearton, R.A. Bartynski, C. Constantine, W.S. Hobson, R.A. Hamm, and P.C. Chao, Solid State Electron. 38, 2011 (1995).

    Article  Google Scholar 

  7. Y.B. Hahn, J.W. Lee, K.D. Mackenzie, D. Johnson, S.J. Pearton, and F. Ren, Solid State Electron. 42, 2017 (1998).

    Article  Google Scholar 

  8. S.-S. Han, B.-H. Jun, K. No, and B.-S. Bae, J. Electrochem. Soc. 145, 652 (1998).

    Article  Google Scholar 

  9. J. Yota, J. Hander, and A.A. Saleh, J. Vac. Sci. Technol. A 18, 372 (2000).

    Article  Google Scholar 

  10. R. Wolf, K. Wandel, and B. Gruska, Surf. Coat. Technol. 142–144, 786 (2001).

    Article  Google Scholar 

  11. A. Sherman, Chemical vapor deposition for microelectronics (New Jersey: Noyes, Park Ridge, 1987).

    Google Scholar 

  12. M.J. Kerr and A. Cuevas, Semicond. Sci. Technol. 17, 166 (2002).

    Article  Google Scholar 

  13. T. Lauinger, J. Schmidt, A.G. Aberle, and R. Hezel, Appl. Phys. Lett. 68, 1232 (1996).

    Article  Google Scholar 

  14. A. Cuevas, M.J. Kerr, and J. Schmidt: Destination RenewablesANZSES (2003).

  15. A.G. Aberle, Sol. Energy Mater. Sol. Cells 65, 239 (2001).

    Article  Google Scholar 

  16. A. Sanjoh, N. Ikeda, K. Komaki, and A. Shintani, J. Electrochem. Soc. 137, 2974 (1990).

    Article  Google Scholar 

  17. S. Ghosh and D.N. Bose, J. Mater. Sci. 5, 193 (1994).

    Google Scholar 

  18. J.-F. Lelievre, E. Fourmond, A. Kaminski, O. Palais, D. Ballutaud, and M. Lemiti, Sol. Energy Mater. Sol. Cells 93, 1281 (2009).

    Article  Google Scholar 

  19. N.-S. Zhou, S. Fujita, and A. Sasaki, J. Electron. Mater. 14, 55 (1985).

    Article  Google Scholar 

  20. P.E. Bagnoli, A. Piccirillo, A.L. Gobbi, and R. Giannetti, Appl. Surf. Sci. 52, 45 (1991).

    Article  Google Scholar 

  21. J.D. Moschner, J. Henze, J. Schmidt, and R. Hezel, Prog. Photovolt. Res. Appl. 12, 21 (2004).

    Article  Google Scholar 

  22. Y.-B. Park and S.-W. Rhee, J. Mater. Sci. 12, 515 (2001).

    Google Scholar 

  23. W.A.P. Claassen, W. Valkenburg, F. Habraken, and Y. Tamminga, J. Electrochem. Soc. 130, 2419 (1983).

    Article  Google Scholar 

  24. Dauwe, S.: Low-temperature rear surface passivation of crystalline silicon solar cells. Ph.D. thesis, University of Hanover, Germany (2003).

  25. M.J. Kushner, J. Appl. Phys. 63, 2532 (1988).

    Article  Google Scholar 

  26. E. Bustarret, M. Bensouda, M.C. Habrard, J.C. Bruyere, S. Poulin, and S.C. Gujrathi, Phys. Rev. B 38, 8171 (1988).

    Article  Google Scholar 

  27. F. Giorgis, F. Giuliani, C.F. Pirri, E. Tresso, C. Summonte, R. Rizzoli, R. Galloni, A. Desalvo, and P. Rava, Philos. Mag. B 77, 925 (1998).

    Article  Google Scholar 

  28. D.L. Smith, A.S. Alimonda, C.-C. Chen, S.E. Ready, and B. Wacker, J. Electrochem. Soc. 137, 614 (1990).

    Article  Google Scholar 

  29. A. El Amrani, A. Bekhtari, B. Mahmoudi, A. Lefgoum, and H. Menari, Vacuum 86, 386 (2011).

    Article  Google Scholar 

  30. C. Doughty, D.C. Knick, J.B. Bailey, and J.E. Spencer, J.␣Vac. Sci. Technol. A 17, 2612 (1999).

    Article  Google Scholar 

  31. B. Kim, J.Y. Park, K.K. Lee, and J.G. Han, Appl. Surf. Sci. 252, 4138 (2006).

    Article  Google Scholar 

  32. J.W. Osenbach, J.L. Zell, W.R. Knolle, and L.J. Howard, J.␣Appl. Phys. 67, 6830 (1990).

    Article  Google Scholar 

  33. W.R. Knolle and J.W. Osenbach, J. Appl. Phys. 58, 1248 (1985).

    Article  Google Scholar 

  34. W.A. Lanford and M.J. Rand, J. Appl. Phys. 49, 2473 (1978).

    Article  Google Scholar 

  35. Z. Yin and F.W. Smith, Phys. Rev. B 42, 3666 (1990).

    Article  Google Scholar 

  36. H. Mäckel and R. Lüdemann, J. Appl. Phys. 92, 2602 (2002).

    Article  Google Scholar 

  37. S. Hasegawa, L. He, Y. Amano, and T. Inokuma, Phys. Rev. B 48, 5315 (1993).

    Article  Google Scholar 

  38. B. Reynes, C. Ance, J.P. Stoquert, and J.C. Bruyère, Sens. Actuators A 33, 25 (1992).

    Article  Google Scholar 

  39. B.L. Jones, J. Non-Cryst. Solids 77, 957 (1985).

    Article  Google Scholar 

  40. M. Blech, A. Laades, C. Ronning, B. Schröter, C. Borschel, D. Rzesanke, and A. Lawerenz, Detailed study of PECVD silicon nitride and correlation of various characterization techniques, Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany (2009), p. 507.

  41. G. Lucovsky, H.Y. Yang, Z. Jing, and J.L. Whitten, Phys. Status Solidi A 159, 5 (1997).

    Article  Google Scholar 

  42. W.A.P. Claassen, W. Valkenburg, M.F.C. Willemsen, and W.M. vd Wijgert, J. Electrochem. Soc. 132, 893 (1985).

    Article  Google Scholar 

  43. V. Verlaan, A.D. Verkerk, W.M. Arnoldbik, C.H.M. Vd Werf, R. Bakker, Z.S. Houweling, I.G. Romijn, D.M. Borsa, A.W. Weeber, S.L. Luxembourg, M. Zeman, H.F.W. Dekkers, and R.E.I. Schropp, Thin Solid Films 517, 3499 (2009).

    Article  Google Scholar 

  44. R. Castagne and A. Vapaille, Surf. Sci. 28, 157 (1971).

    Article  Google Scholar 

  45. C.N. Berglund, IEEE Trans. Electron Dev. ED-13, 701 (1966).

    Article  Google Scholar 

  46. E.H. Nicollian and J.R. Brews, MOS (metal oxide semiconductor) physics and technology (New York: Wiley, 1982).

    Google Scholar 

  47. V. Kumar, R. Pal, P.K. Chaudhury, B.L. Sharma, and V. Gopal, J. Electron. Mater. 34, 1225 (2005).

    Article  Google Scholar 

  48. J. Robertson and M.J. Powell, J. Non-Cryst. Solids 77, 1007 (1985).

    Article  Google Scholar 

  49. T. Lauinger, J. Moschner, A.G. Aberle, and R. Hezel, J. Vac. Sci. Technol. A 16, 530 (1998).

    Article  Google Scholar 

  50. B. Kim, S. Kim, and Kwon, Met. Mater. Int. 13, 495 (2007).

    Article  Google Scholar 

  51. J. Robertson and M.J. Powell, Appl. Phys. Lett. 44, 415 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (DP120104835), Western Australian Node of the Australian National Fabrication Facility, and the Office of Science of the WA State Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Umana-Membreno, G., Gu, R. et al. Investigation of ICPECVD Silicon Nitride Films for HgCdTe Surface Passivation. J. Electron. Mater. 44, 2990–3001 (2015). https://doi.org/10.1007/s11664-015-3703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3703-y

Keywords

Navigation