Skip to main content
Log in

The Study of DC- and AC-Driven GaAs-Coupled Gas Discharge Micro Plasma Systems: Modeling and Simulation

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study was carried out to investigate and compare gas discharge–semiconductor systems (GDSS) operating under direct-current (DC) and alternating-current (AC) modes for any contribution toward improving energy conversion efficiency. Nonthermal micro plasma discharge systems with novel pattern recognition solutions have received scientific attention due to the rapid technological innovation and faster resolution of complicated problems in computing technology. In the scope of this study, AC-driven discharges using argon gas at atmospheric pressure (760 Torr) were modeled and simulated at 50 Hz and 20 kHz pulse rates generated by a 1.0 kV amplitude power source. DC-driven discharges using argon gas at various sub-atmospheric pressures from 10 Torr up to 760 Torr were also modeled and simulated in the GDSS cell to which a high-ohmic semi-insulating gallium arsenide (GaAs) electrode material was coupled. Gallium arsenide compound semiconductor material has been widely used in optoelectronics due to its high electron mobility and direct narrow band gap properties. DC- and AC-driven micro plasmas were numerically analyzed using the COMSOL Multiphysics simulation program in two-dimensional media. Simulation results in a set of surface and multiple-line graph media were deeply evaluated and reported based on the time-dependent computations of various discharge parameters including mean electron energy, migrative electron flux, surface charge density, space charge density, and surface electron current density for both DC- and AC-driven dielectric barrier discharge (DBD) micro plasma modes. It was observed that highly recognizable unique micro plasma pattern formations can be controlled on a large scale by varying the discharge key parameters and driving modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. A. Nakao, Y. Tanaka, and A. Ide-Ektessabi, Discharge properties of a micro plasma cell with an MgO–NiO protecting layer. Surf. Coat. Technol. 203(17–18), 2731 (2009).

    Article  CAS  Google Scholar 

  2. Y. Song, K. Choi, D.H. Jun, and J. Oh, Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers. Opt. Express 25(20), 23862 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. R.C. Knechtli, R.Y. Loo, and G.S. Kamath, High-efficiency GaAs solar cells. IEEE Trans. Electron Devices 31(5), 577 (1984).

    Article  Google Scholar 

  4. P.A. Iles, Photovoltaic conversion: space applications. Encycloped. Energy. 5, 25 (2004).

    Article  Google Scholar 

  5. Y.Y. Peter, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties. Springer-Verlag Berlin Heidelberg, 4th edition, eBook ISBN 978-3-642-00710-1 (2010)

  6. O. Madelung, Semiconductors: Data Handbook. Springer Berlin Heidelberg, 3rd edition, eBook ISBN 978-3-642-18865-7 (2012)

  7. A. Rogalski, Infrared Detectors. CRC press, 2nd edition, https://doi.org/10.1201/b10319 (2010).

  8. H.H. Kurt and E. Tanrıverdi, The features of GaAs and GaP semiconductor cathodes in an infrared converter system. J. Electron. Mater. 46, 4024 (2017).

    Article  CAS  Google Scholar 

  9. Yu.A. Astrov, A.N. Lodygin, and L.M. Portsel, Dynamics and stability of the Townsend discharge in nitrogen in narrow gaps. Phys. Rev. E 89, 033109 (2014).

    Article  Google Scholar 

  10. R.A. Meyers, Encyclopedia of Physical Science and Technology. Academic Press 3rd edition, ISBN-13: 978-0122274107 (2001).

  11. F.H. Raab, P. Asbeck, S. Cripps, P.B. Kenington, Z.B. Popovic, N. Pothecary, J.F. Sevic, and N.O. Sokal, RF and microwave power amplifier and transmitter technologies—part 1. High Frequency Electron. 2, 22 (2003).

    Google Scholar 

  12. B.L. Markham, T. Arvidson, J.A. Barsi, M. Choate, E. Kaita, R. Levy, J.G. Masek, Landsat program Comprehensive remote sensing. Reference Module in Earth Systems and Environmental Sciences. 1, 27,1 (2017)

  13. M. Kondow, T. Kitatani, S. Nakatsuka, M.C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, GaInNAs: a novel material for long-wavelength semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 3(3), 719 (1997).

    Article  CAS  Google Scholar 

  14. T.M. Khan, S.U.-D. Khan, M. Raffi, and R. Khan, Theoretical–computational study of atmospheric DBD plasma and its utility for nanoscale biocompatible plasmonic coating. Molecules 26(16), 5106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A.L. Garner, G. Meng, Y. Fu, A.M. Loveless, R.S. Brayfield II., and A.M. Darr, Transitions between electron emission and gas breakdown mechanisms across length and pressure scales. J. Appl. Phys. 128, 210903 (2020).

    Article  CAS  Google Scholar 

  16. A.A. Abdelaziz, T. Seto, M. Abdel-Salam, and Y. Otani, Performance of a surface dielectric barrier discharge-based reactor for destruction of naphthalene in an air stream. J. Phys. D Appl. Phys. 45(11), 115201 (2012).

    Article  Google Scholar 

  17. S. Chen, T. Wang, H.Q. Wang, and Z.B. Wu, Insights into the reaction pathways and mechanism of NO removal by SDBD plasma via FT-IR measurements. Fuel Process. Technol. 186, 125 (2019).

    Article  CAS  Google Scholar 

  18. K. Nassour, M.M. Brahami, S. Nemmich, N. Hammadi, N. Zouzou, and A. Tilmatine, A new hybrid surface–volume dielectric barrier discharge reactor for ozone generation. IEEE Trans. Ind. Appl. 53(3), 2477 (2017).

    Article  CAS  Google Scholar 

  19. J. Jolibois, K. Takashima, and A. Mizuno, Application of a non-thermal surface plasma discharge in wet condition for gas exhaust treatment: NOx removal. J. Electrostat. 70(3), 300 (2012).

    Article  CAS  Google Scholar 

  20. A. Wang and Z. Hou, Improving the energy efficiency of surface dielectric barrier discharge devices for plasma nitric oxide conversion utilizing active flow control. Chin. J. Chem. Eng. 53, 270 (2023).

    Article  CAS  Google Scholar 

  21. J.T. Gudmundsson and A. Hecimovic, Foundations of DC plasma sources. Plasma Sour. Sci. Technol. 26, 123001 (2017).

    Article  Google Scholar 

  22. J.-L. Delcroix and A.R. Trindade, Hollow cathode arcs. Adv. Electron. Electron. Phys. 35, 87 (1974).

    Article  CAS  Google Scholar 

  23. H.H. Kurt and E. Tanrıverdi, Electrical properties of ZnS and ZnSe semiconductors in a plasma-semiconductor system. J. Electron. Mater. 46(7), 3965 (2017).

    Article  CAS  Google Scholar 

  24. L.M. Portsel, Yu.A. Astrov, I. Reimann, and H.-G. Purwins, Glow dynamics in a semiconductor-gas discharge image converter. J. Appl. Phys. 81, 1077 (1997).

    Article  CAS  Google Scholar 

  25. A.A. Dougal and L. Goldstein, Energy exchange between electron and ion gases through Coulomb collisions in plasmas. Phys. Rev. 109, 615 (1958).

    Article  CAS  Google Scholar 

  26. D. Maric, M. Savic, J. Sivos, N. Skoro, M. Radmilovic-Radjenovic, G. Malovic, and Z. Lj, Petrovic, gas breakdown and secondary electron yields. Eur. Phys. J. D 68, 155 (2014).

    Article  Google Scholar 

  27. C.C. Kao and Y.C. Liu, Intense green emission of ZnS:Cu, Al phosphor obtained by using diode structure of carbon nano-tubes field emission display. Mater. Chem. Phys. 115, 463 (2009).

    Article  CAS  Google Scholar 

  28. Y.P. Raizer, Gas Discharge Physics. J.E. Allen (ed.). Springer Berlin Heidelberg. ISBN 978-3-642-64760-4 (2011)

  29. S.C. Brown, Chapter 1: A Short History of Gaseous Electronics. Hirsh, Merle N., Oskam; H. J. (eds.). Gaseous Electronics. Vol. 1. Academic Press. ISBN 978-0-12-349701-7 (1978)

  30. V.B. Gildenburg and N.V. Vvedenskii, Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process. Phys. Rev. Lett. 98, 245002 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. C. Busch and U. Kortshagen, Numerical solution of the spatially inhomogeneous Boltzmann equation and verification of the nonlocal approach for an argon plasma. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat Interdiscip. Topics 51(1), 280 (1995).

    CAS  PubMed  Google Scholar 

  32. I.A. Abroyan, M.A. Eremeev, and N.N. Petrov, Excitation of electrons in solids by relatively slow atomic particles. Sov. Phys. Usp. 10, 332 (1967).

    Article  Google Scholar 

  33. V. Lisovskiy, P.P. Platonov, S.V. Dudin, Influence of voltage pulse duration on ignition of glow discharge in air. Problems of Atomic Science and Technology No 1 Series: Plasma Physics. 25, 156,1 (2019).

  34. I.H. Hutchinson, Principles of Plasma Diagnostics. Cambridge University Press, 2nd edition (2002), https://doi.org/10.1017/CBO9780511613630

  35. D.B. Go and D.A. Pohlman, A mathematical model of the modified Paschen’s curve for breakdown in microscale gaps. J. Appl. Phys. 107, 103303 (2010).

    Article  Google Scholar 

  36. W. Shockley, Transistor electronics: Imperfections, unipolar and analog transistors. Proc. IRE 40(11), 1289 (1952).

    Article  Google Scholar 

  37. W. Zhao, F. Wang, Y. Liu, R. Zhang, and H. Hou, Effects of electrode structure and electron energy on abatement of NO in dielectric barrier discharge reactor. Appl. Sci. 8(4), 618 (2018).

    Article  Google Scholar 

  38. R. Atkinson, D.L. Baulch, R.A. Cox, R.F. Hampson Jr., J.A. Kerr, M.J. Rossi, and J. Troe, Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: supplement V. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data 26(3), 521 (1997).

    Article  CAS  Google Scholar 

  39. P.K. Chu, X. Lu, Low Temperature Plasma Technology Methods and Applications, CRC Press 1st Edition, (2013), https://doi.org/10.1201/b15153.

  40. E. Thiessen, F.X. Bronold, and H. Fehske, Electron energy loss spectroscopy of wall charges in plasma-facing dielectrics. Plasma Sources Sci. Technol. 28(9), 095024 (2019).

    Article  CAS  Google Scholar 

  41. P. Reichen, A. Sonnenfeld, and Ph.R. Rohr, Discharge expansion in barrier discharge arrangements at low applied voltages. Plasma Sour. Sci. Technol. 20(5), 055015 (2011).

    Article  Google Scholar 

  42. R. Gueroult, J.M. Rax, and N.J. Fisch, Centrifugal instability in the regime of fast rotation. Phys. Plasmas 24, 082102 (2017).

    Article  Google Scholar 

  43. C. Liu, A. Fridman, and D. Dobrynin, Investigation of the transition from streamer to uniform “overvoltage” mode of atmospheric air nanosecond-pulsed dielectric barrier discharge. J. Phys. D Appl. Phys. 52, 105205 (2019).

    Article  Google Scholar 

  44. Y.A. Lebedev, Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma. Plasma Sour. Sci. Technol. 24(5), 053001 (2015).

    Article  Google Scholar 

  45. U. Kogelschartz, Filamentary, patterned, and diffuse barrier discharges. IEEE Trans. Plasma Sci. 30(4), 1400 (2002).

    Article  Google Scholar 

  46. M. Laroussi, G.S. Sayler, B.B. Glascock, B. McCurdy, M.E. Pearce, N.G. Bright, and C.M. Malott, Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure. IEEE Trans. Plasma Sci. 27(1), 34 (1999).

    Article  Google Scholar 

  47. K.H. Becker, U. Kogelschatz, K.H. Schoenbach, and R.J. Barker, Non-equilibrium air plasmas at atmospheric pressure. CRC Press, 1st edition, New York (2005), https://doi.org/10.1201/9781482269123

  48. P. Dimitrakellis and E. Gogolides, Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: a review. Adv. Coll. Interface. Sci. 254, 1 (2018).

    Article  CAS  Google Scholar 

  49. S. Elaissi and N.A.M. Alsaif, Modelling of nonthermal dielectric barrier discharge plasma at atmospheric pressure and role of produced reactive species in surface polymer microbial purification. Polymers 15(5), 1235 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. S. Kawaguchi, K. Takahashi, H. Ohkama, and K. Satoh, Deep learning for solving the Boltzmann equation of electrons in weakly ionized plasma. Plasma Sour. Sci. Technol. 29(2), 025021 (2020).

    Article  CAS  Google Scholar 

  51. P. Vanraes, A. Nikiforov, A. Bogaerts, and C. Leys, Study of an AC dielectric barrier single micro-discharge filament over a water film. Sci. Rep. 8, 10919 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. J.-H.R. Kim, H. Maurer, Yu.A. Astrov, M. Bode, and H.-G. Purwins, High-speed switch-on of a semiconductor gas discharge image converter using optimal control methods. J. Comput. Phys. 170(1), 395 (2001).

    Article  Google Scholar 

  53. V.I. Kolobov, Fokker-Planck modeling of electron kinetics in plasmas and semiconductors. Comput. Mater. Sci. 28(2), 302 (2003).

    Article  CAS  Google Scholar 

  54. X. Wang, C. Li, M. Lu, and Y. Pu, Study on an atmospheric pressure glow discharge. Plasma Sour. Sci. Technol. 12(3), 358 (2002).

    Article  Google Scholar 

  55. H.Y. Kurt, A. Inaloz, and B.G. Salamov, Study of non-thermal plasma discharge in semiconductor gas discharge electronic devices. Optoelectron. Adv. Mater. Rapid Commun. 4(2), 205 (2010).

    CAS  Google Scholar 

  56. H. Kurt, E. Koc, and B.G. Salamov, Atmospheric pressure DC glow discharge in semiconductor gas discharge electronic devices. IEEE Trans. Plasma Sci. 38(2), 137 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by Gazi University Scientific Research Projects Coordination Unit (BAP Project Number: FDK-2023-8701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Hilal Yücel.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this study.

Ethical Approval

The authors declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 437 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yücel, H.H., Utaş, S. & Ongun, E. The Study of DC- and AC-Driven GaAs-Coupled Gas Discharge Micro Plasma Systems: Modeling and Simulation. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11098-6

Keywords

Navigation