Skip to main content
Log in

Zn0.76Co0.24S Embedded in Multiwalled Carbon Nanotubes as Anode Material for Sodium-Ion Batteries

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A composite anode composed of Zn0.76Co0.24S and multiwalled carbon nanotubes (Zn0.76Co0.24S/MWCNTs) was synthesized by hydrothermal vulcanization and its sodium storage performance was tested. Because of the synergistic effect between CNTs and Zn0.76Co0.24S, the Zn0.76Co0.24S/MWCNTs exhibited good sodium storage properties. After 40 cycles, the Zn0.76Co0.24S/MWCNT anode exhibited a high reversible specific capacity of 584.9 mAh g−1, while the Zn0.76Co0.24S electrode only provided a reversible specific capacity of 117.5 mAh g−1. Additionally, Zn0.76Co0.24S/MWCNTs exhibited an excellent rate performance (649.8 mAh g−1 at 0.1 A g−1, 376.6 mAh g−1 at 1 A g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Kim, H. Kim, and Z. Ding, Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016).

    Article  Google Scholar 

  2. N. Yabuuchi, K. Kubota, and M. Dahbi, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. H.M. Wang, J. Xiong, X. Cheng, G. Chen, T. Kups, D. Wang, and P. Schaaf, N-doped TiO2 with a disordered surface layer fabricated via plasma treatment as an anode with clearly enhanced performance for rechargeable sodium ion batteries. Sustain. Energ. Fuels 3(10), 2688 (2019).

    Article  CAS  Google Scholar 

  4. X.X. An, H.L. Yang, Y.P. Wang, Y. Tang, S.Q. Liang, A.Q. Pan, and G.Z. Cao, Hydrothermal synthesis of coherent porous V2O3/carbon nanocomposites for high-performance lithium-and sodium-ion batteries. Sci. China-Mater. 60(8), 717 (2017).

    Article  CAS  Google Scholar 

  5. J.Y. Liao and A. Manthiram, High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage. Nano Energy 18, 20 (2015).

    Article  CAS  Google Scholar 

  6. H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, and T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2(20), 2560 (2011).

    Article  CAS  Google Scholar 

  7. D.W. Su, H.J. Ahn, and G.X. Wang, Beta-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries. NPG Asia Mater. 5, e70 (2013).

    Article  CAS  Google Scholar 

  8. L.P. Yang, Z.H. Zhang, L.S. Xia, Y.F. Zhao, F. Li, X. Zhang, J.P. Wei, and Z. Zhou, Integrated insights into Na+ storage mechanism and electrochemical kinetics of ultrafine V2O3/S and N co-doped rGO composites as anodes for sodium ion batteries. J. Mater. Chem. A 7(39), 22429 (2019).

    Article  CAS  Google Scholar 

  9. X. Guo, H. Gao, and G.X. Wang, A robust transition-metal sulfide anode material enabled by truss structures. Chem 6(2), 334 (2020).

    Article  CAS  Google Scholar 

  10. Y.C. Liu, Y. Li, H.Y. Kang, T. Jin, and L.F. Jiao, Design, synthesis, and energy-related applications of metal sulfides. Mater. Horizons 3(5), 402 (2016).

    Article  CAS  Google Scholar 

  11. M.R. Gao, Y.F. Xu, J. Jiang, and S.H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42(7), 2986 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. S. Pramanik, T. Maiti, M. Dhawa, and S. Sreemany, Mahanty, High faradaic charge storage in ZnCo2S4 film on Ni-foam with a hetero-dimensional microstructure for hybrid supercapacitor. Mater. Today Energy 9, 416 (2018).

    Article  Google Scholar 

  13. Y.H. Zou, Y. Gu, B. Hui, X.F. Yang, H.W. Liu, S. Chen, R.S. Cai, J. Sun, X.L. Zhang, and D.J. Yang, Nitrogen and sulfur vacancies in carbon shell to tune charge distribution of Co6Ni3S8 core and boost sodium storage. Adv. Energy Mater. 10(18), 1904147 (2020).

    Article  CAS  Google Scholar 

  14. X.J. Liu, Y.C. Hao, J. Shu, H.M.K. Sari, L.X. Lin, H.R. Kou, J.W. Li, W. Liu, B. Yan, D.J. Li, J.J. Zhang, and X.F. Li, Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy 57, 414 (2019).

    Article  CAS  Google Scholar 

  15. J.J. Wang, X.Y. Yue, Z.K. Xie, A. Abudula, and G.Q. Guan, MOFs-derived transition metal sulfide composites for advanced sodium ion batteries. Energy Storage Mater. 41, 404 (2021).

    Article  Google Scholar 

  16. H.P. Zhou and J. Hu, Facile synthesis of multi-walled carbon nanotubes/Co9S8 composites with enhanced performances for sodium-ion battery. Mater. Lett. 195, 26 (2017).

    Article  CAS  Google Scholar 

  17. Z. Wen, Q. Wang, Q. Zhang, and J. Li, In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 17(15), 2772 (2017).

    Article  Google Scholar 

  18. L. Noerochim, J.Z. Wang, S.L. Chou, H.J. Li, and H.K. Liu, SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries electrochim. Acta 56(1), 314 (2010).

    CAS  Google Scholar 

  19. J.Y. Hwang, S.T. Myung, J.H. Lee, A. Abouimrane, I. Belharouak, and Y.K. Sun, Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy 16, 218 (2015).

    Article  CAS  Google Scholar 

  20. B. Han, W. Zhang, D. Gao, C.G. Zhou, K.S. Xia, Q. Gao, and J.P. Wu, Encapsulating tin oxide nanoparticles into holey carbon nanotubes by melt infiltration for superior lithium and sodium ion storage. J. Power. Sources 449, 227564 (2020).

    Article  CAS  Google Scholar 

  21. X. Liu, G.B. Xu, H.P. Xiao, X.L. Wei, and L.W. Yang, Free-standing hierarchical porous assemblies of commercial TiO2 nanocrystals and multi-walled carbon nanotubes as high-performance anode materials for sodium ion batteries. Electrochim. Acta 236, 33 (2017).

    Article  CAS  Google Scholar 

  22. Y. Yang, S. Li, W. Huang, H.H. Shangguan, C. Engelbrekt, S.W. Duan, L.J. Ci, and P.C. Si, Effective synthetic strategy for Zn0.76Co0.24S encapsulated in stabilized N-doped carbon nanoarchitecture towards ultra-long-life hybrid supercapacitors. J. Mater. Chem. A 7(24), 14670 (2019).

    Article  CAS  Google Scholar 

  23. H.K. Zhang, J.Y. Liu, X.R. Lin, Y. Zhong, J.H. Ren, Z.L. Wang, T.L. Han, and J.J. Li, A metal organic foam-derived zinc cobalt sulfide with improved binding energies towards polysulfides for lithium-sulfur batteries. Ceram. Int. 46(9), 14056 (2020).

    Article  CAS  Google Scholar 

  24. W. Liu, M. Shao, W.Q. Zhou, B. Yuan, C. Gao, H.F. Li, X.J. Xu, H.M. Chu, Y. Fan, W.N. Zhang, S. Li, J.F. Hui, D.D. Fan, and F.W. Huo, Hollow Ni-CoSe2 embedded in nitrogen-doped carbon nanocomposites derived from metal-organic frameworks for high-rate anodes. ACS Appl. Mater. Interfaces 10(45), 38845 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. M.C. Biesinger, Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: insights from a multi-user facility data review. Appl. Surf. Sci. 597, 153681 (2022).

    Article  CAS  Google Scholar 

  26. Y.L. Zhou, D. Yan, H.Y. Xu, J.K. Feng, X.L. Jiang, J. Yue, J. Yang, and Y.T. Qian, Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12, 528 (2015).

    Article  CAS  Google Scholar 

  27. D.Y. Kim, G.S. Ghodake, N.C. Maile, A.A. Kadam, D.S. Lee, V.J. Fulari, and S.K. Shinde, Chemical synthesis of hierarchical NiCo2S4 nanosheets like nanostructure on flexible foil for a high performance supercapacitor. Sci. Rep. 7, 9764 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. M.Z. Ma, Y. Yao, Y. Wu, and Y. Yu, Progress and prospects of transition metal sulfides for sodium storage. Adv. Fiber Mater. 2(6), 314 (2020).

    Article  CAS  Google Scholar 

  29. Y.M. Lin, J.T. Huang, L.D. Shi, G.T. Cong, C.Z. Zhu, and J. Xu, Combining Zn0.76Co0.24S with S-doped graphene as high-performance anode materials for lithium-and sodium-ion batteries. Nanotechnol. Rev. 9(1), 1227 (2020).

    Article  CAS  Google Scholar 

  30. Y.Q. Miao, X.S. Zhao, X. Wang, C.H. Ma, L. Cheng, G. Chen, H.J. Yue, L. Wang, and D. Zhang, Flower-like NiCo2S4 nanosheets with high electrochemical performance for sodium-ion batteries. Nano Res. 13(11), 3041 (2020).

    Article  CAS  Google Scholar 

  31. D. Goonetilleke, J.C. Pramudita, M. Choucair, A. Rawal, and N. Sharma, Sodium insertion/extraction from single-walled and multi-walled carbon nanotubes: the differences and similarities. J. Power. Sources 314, 102 (2016).

    Article  CAS  Google Scholar 

  32. Q.J. Yang, W. Gao, W. Zhong, M. Tao, Y.R. Qi, S.J. Bao, and M.W. Xu, A synergistic Bi2S3/MXene composite with enhanced performance as an anode material of sodium-ion batteries. New J. Chem. 44(7), 3072 (2020).

    Article  CAS  Google Scholar 

  33. V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruna, P. Simon, and B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. F.P. Xiao, X.M. Yang, D.H. Wang, H.M. Wang, D.Y.W. Yu, and A.L. Rogach, Metal-organic framework derived CoS2 wrapped with nitrogen-doped carbon for enhanced lithium/sodium storage performance. ACS Appl. Mater. Interfaces 12(11), 12809 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Y.H. Jin, H. Seong, J. Ha Moon, S.Y. Lee, S.K. Kim, M.H. Yang, J.B. Lee, S.Y. Cho, and J. Choi, Study on colloidal synthesis of ZnS nanospheres embedded in reduced graphene oxide materials for sodium-ion batteries and energy storage mechanism. J. Alloy. Compd. 943, 169076 (2023).

    Article  CAS  Google Scholar 

  36. M. Jia, W.F. Chen, Y.L. He, Y.T. Liu, and M.Q. Jia, ZnS/CoS@C derived from ZIF-8/67 rhombohedral dodecahedron dispersed on graphene as high-performance anode for sodium-ion batteries. Molecules 28(19), 6914 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M.J. Jing, Z.G. Chen, Z. Li, F.Y. Li, M.J. Chen, M.J. Zhou, B.H. He, L. Chen, Z.H. Hou, and X.B. Chen, Facile synthesis of ZnS/N, S Co-doped carbon composite from zinc metal complex for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 10(1), 704 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Z. Zhang, Y. Huang, X.D. Liu, C. Chen, Z.P. Xu, and P.B. Liu, Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon 157, 244 (2020).

    Article  CAS  Google Scholar 

  39. Y.X. Wu, J.Q. Cheng, Z.B. Liang, T.J. Qiu, Y.Q. Tang, J.M. Shi, S. Gao, R.Q. Zhong, and R.Q. Zou, Construction of CoS-encapsulated in ultrahigh nitrogen doped carbon nanofibers from energetic metal-organic frameworks for superior sodium storage. Carbon 198, 353 (2022).

    Article  CAS  Google Scholar 

  40. C.C. Liu, Q.Q. Lu, M.V. Gorbunov, A. Omar, I.G.G. Martinez, P.P. Zhao, M. Hantusch, A.D.C. Permana, H.Y. He, N. Gaponik, and D. Mikhailova, Ultrasmall CoS nanoparticles embedded in heteroatom-doped carbon for sodium-ion batteries and mechanism explorations via synchrotron X-ray techniques. J. Energy Chem. 79, 373 (2023).

    Article  CAS  Google Scholar 

  41. D.M. Chen, Y.C. Wu, Z.Q. Huang, K.H. Wang, X. Zhu, Z. Wang, and J. Chen, Phase transformation controlled Co1-xS-CoS2 heterostructures embedded in S-doped carbon nanofibers for superior Sodium-Ion storage. Chem. Eng. J. 457, 141181 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from 2021 Zhangjiagang City Industry-University-research Pre-research Fund Project (No.ZKCXY2102) and National Natural Science Foundation of China (No.22078191).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiachang Zhao or Jun Jin.

Ethics declarations

Conflict of interest

Jing Yuan and Jingjing Zhang contributed equally to this manuscript. The authors declared no potential conflicts of interest with respect to the research, author- ship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Zhang, J., Zhao, J. et al. Zn0.76Co0.24S Embedded in Multiwalled Carbon Nanotubes as Anode Material for Sodium-Ion Batteries. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11089-7

Keywords

Navigation