Skip to main content
Log in

Aging Mechanisms and Evolution Patterns of Commercial LiFePO4 Lithium-Ion Batteries

  • Topical Collection: High-Energy Battery Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

It is crucial to fully understand the degradation law of commercial LiFePO4 lithium-ion batteries (LIBs) in terms of their health and safety status under different operating conditions, as well as the degradation mechanism and influencing factors. This work investigates the evolution patterns of cycling performance in commercial LiFePO4 batteries under different operating conditions, including temperature, electrolyte, charge/discharge rate, and depth of cycling. Structure characterization tests on electrode materials before and after long-term cycles have been carried out to elucidate the failure/degradation mechanisms during battery operation. It has been found that it is a comprehensive effect from different operation conditions that results in performance degradation. Fe element shuttling and Li deposition may cause internal decay of LiFePO4 LIBs. Additionally, working temperatures and the rate and depth of discharge (DOD) should be strictly controlled to achieve high energy retention and long life. This study proposes a perspective that explores the impact of internal and external factors on the degradation of the safety performance in LiFePO4 LIBs, with the aim of improving the safe and stable operation of large-scale LiFePO4 LIB energy storage systems, as it is favorable to unravel their complex multi-dimensional evolution mechanism and coupling effects throughout their life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.J. Ackland, M. Dunuwille, M. Martinez-Canales, I. Loa, R. Zhang, S. Sinogeikin, W.Z. Cai and S. Deemyad, Quantum and isotope effects in lithium metal. Science 356(6344), 1254 (2017). https://doi.org/10.1126/science.aal4886.

    Article  CAS  PubMed  Google Scholar 

  2. L.H. Ye and X. Li, A dynamic stability design strategy for lithium metal solid state batteries. Nature 593(7858), 218 (2021). https://doi.org/10.1038/s41586-021-03486-3.

    Article  CAS  PubMed  Google Scholar 

  3. Y.Y. Zhu, J. Xie, A. Pei, B.F. Liu, Y.C. Wu, D.C. Lin, J. Li, H.S. Wang, H. Chen, J.W. Xu and A. Yang, Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nat. Commun. 10(1), 2067 (2019). https://doi.org/10.1038/s41467-019-09924-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J.D. McBrayer, M.T.F. Rodrigues, M.C. Schulze, D.P. Abraham, C.A. Apblett, I. Bloom, G.M. Carroll, A.M. Colclasure, C. Fang, K.L. Harrison and G. Liu, Calendar aging of silicon-containing batteries. Nat. Energy 6(9), 866–872 (2021). https://doi.org/10.1038/s41560-021-00883-w.

    Article  CAS  Google Scholar 

  5. J.Y. Wang, W. Huang, A. Pei, Y.Z. Li, F.F. Shi, X.Y. Yu and Y. Cui, Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 4(8), 664 (2019). https://doi.org/10.1038/s41560-019-0413-3.

    Article  CAS  Google Scholar 

  6. T.S. Abhijith, S.S. Shijina, V.P.M. Rabeeh and V. Sajith, Transient heat transfer studies of aluminium graphene nanocomposite heat spreaders using digital interferometry. Appl. Thermal Eng. 236, 121877 (2024). https://doi.org/10.1016/j.applthermaleng.2023.121877.

    Article  CAS  Google Scholar 

  7. L.N. Acosta and V. Flexer, Accelerated charging protocols for lithium-ion batteries: are fast chargers really convenient? J. Solid State Electrochem. 28(3), 1107 (2023). https://doi.org/10.1007/s10008-023-05789-z.

    Article  CAS  Google Scholar 

  8. Y.I. Kwon, J.D. Kim and Y.S. Song, Agitation effect on the rheological behavior of lithium-ion battery slurries. J. Electron. Mater. 44(1), 475 (2015). https://doi.org/10.1007/s11664-014-3349-1.

    Article  CAS  Google Scholar 

  9. K.O. Oyedotun, J.O. Ighalo, J.F. Amaku, C. Olisah, A.O. Adeola, K.O. Iwuozor, K.G. Akpomie, J. Conradie and K.A. Adegoke, Advances in supercapacitor development: materials, processes, and applications. J. Electron. Mater. 52(1), 96 (2023). https://doi.org/10.1007/s11664-022-09987-9.

    Article  CAS  Google Scholar 

  10. J.H. Xu, B. Paredes-Goyes, Z.L. Su, M. Scheel, T. Weitkamp, A. Demortière and A.A. Franco, Computational model for predicting particle fracture during electrode calendering. Batter. Supercaps 6(12), e202300371 (2023). https://doi.org/10.1002/batt.202300371.

    Article  Google Scholar 

  11. J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler and A. Hammouche, Ageing mechanisms in lithium-ion batteries. J. Power Sources 147(1–2), 269 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.006.

    Article  CAS  Google Scholar 

  12. M. Broussely, S. Herreyre, P. Biensan, P. Kasztejna, K. Nechev and R.J. Staniewicz, Aging mechanism in Li ion cells and calendar life predictions. J. Power Sources 97–8, 13 (2001). https://doi.org/10.1016/S0378-7753(01)00722-4.

    Article  Google Scholar 

  13. G. Sarre, P. Blanchard and M. Broussely, Aging of lithium-ion batteries. J. Power Sources 127(1–2), 65 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.008.

    Article  CAS  Google Scholar 

  14. P. Biensan, B. Simon, J.P. Peres, A. de Guibert, M. Broussely, J.M. Bodet and F. Perton, On safety of lithium-ion cells. J. Power Sources 81–82, 906 (1999). https://doi.org/10.1016/s0378-7753(99)00135-4.

    Article  Google Scholar 

  15. M.R. Palacín and A. de Guibert, Why do batteries fail? Science 351(6273), 1253292 (2016). https://doi.org/10.1126/science.1253292.

    Article  CAS  PubMed  Google Scholar 

  16. S.H. Shen, Y.B. Chen, J.C. Zhou, H.M. Zhang, X.H. Xia, Y.F. Yang, Y.Q. Zhang, A. Noori, M.F. Mousavi, M.H. Chen and Y. Xia, Microbe-mediated biosynthesis of multidimensional carbon-based materials for energy storage applications. Adv. Energy Mater. 13(19), 2204259 (2023). https://doi.org/10.1002/aenm.202204259.

    Article  CAS  Google Scholar 

  17. Z. Qiu, S.H. Shen, P. Liu, C. Li, Y. Zhong, H. Su, X.E. Xu, Y.Q. Zhang, F. Cao, A. Noori et al., Plasma enhanced lithium coupled with cobalt fibers arrays for advanced energy storage. Adv. Funct. Mater. 33(16), 2214987 (2023). https://doi.org/10.1002/adfm.202214987.

    Article  CAS  Google Scholar 

  18. P. Liu, J. Wang, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser and P. Finamore, Aging mechanisms of lifepo4 batteries deduced by electrochemical and structural analyses. J. Electrochem. Societ 157(4), A499–A507 (2010). https://doi.org/10.1149/1.3294790.

    Article  CAS  Google Scholar 

  19. Y. Qiu and F. Jiang, A review on passive and active strategies of enhancing the safety of lithium-ion batteries. Int. J. Heat Mass Transf. 184, 122288 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122288.

    Article  CAS  Google Scholar 

  20. J. Wang, X. Guo, Z. Luo, H. Yang, M. Chen and K. Wang, A safety design strategy for practical lithium-ion pouch cells. Electrochimica Acta 465, 142992 (2023). https://doi.org/10.1016/j.electacta.2023.142992.

    Article  CAS  Google Scholar 

  21. B. Liu, Y. Zhang, Z. Wang, C. Ai, S. Liu, P. Liu, Y. Zhong, S. Lin, S. Deng, Q. Liu, G. Pan et al., Coupling a sponge metal fibers skeleton with In Situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries. Adv. Mater. 32(34), e2003657 (2020). https://doi.org/10.1002/adma.202003657.

    Article  CAS  PubMed  Google Scholar 

  22. L. Huang, S. Shen, Y. Zhong, Y. Zhang, L. Zhang, X. Wang, X. Xia, X. Tong, J. Zhou and J. Tu, Multifunctional hyphae carbon powering lithium-sulfur batteries. Adv. Mater. 34(6), e2107415 (2022). https://doi.org/10.1002/adma.202107415.

    Article  CAS  PubMed  Google Scholar 

  23. P. Liu, Z. Qiu, F. Cao, Y.Q. Zhang, X.P. He, S.H. Shen, X.Q. Liang, M.H. Chen, C. Wang, W.J. Wan and Y. Xia, Liquid-source plasma technology for construction of dual bromine-fluorine-enriched interphases on lithium metal anodes with enhanced performance. J. Mater. Sci. Technol. 177, 68 (2024). https://doi.org/10.1016/j.jmst.2023.09.001.

    Article  Google Scholar 

  24. Y. Wang, C. Zhang, J. Hu, P. Zhang, L. Zhang and L. Lao, Investigation on calendar experiment and failure mechanism of lithium-ion battery electrolyte leakage. J. Energy Storage 54, 105286 (2022). https://doi.org/10.1016/j.est.2022.105286.

    Article  Google Scholar 

  25. F. Orsini, A. Du Pasquier, B. Beaudoin, J.M. Tarascon, M. Trentin, N. Langenhuizen, E. De Beer and P. Notten, In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries. J. Power Sources 76(1), 19 (1998). https://doi.org/10.1016/s0378-7753(98)00128-1.

    Article  CAS  Google Scholar 

  26. T. Li, L. Tao, L. Xu, T. Meng, B.C. Clifford, S. Li, X. Zhao, J. Rao, F. Lin and L. Hu, Direct and rapid high-temperature upcycling of degraded graphite. Adv. Funct. Mater. 33(43), 2302951 (2023). https://doi.org/10.1002/adfm.202302951.

    Article  CAS  Google Scholar 

  27. L. Huang, T. Guan, H. Su, Y. Zhong, F. Cao, Y. Zhang, X. Xia, X. Wang, N. Bao and J. Tu, Synergistic interfacial bonding in reduced graphene oxide fiber cathodes containing polypyrrole@sulfur nanospheres for flexible energy storage. Angewandte Chemie International Edition 61(44), e202212151 (2022). https://doi.org/10.1002/anie.202212151.

    Article  CAS  PubMed  Google Scholar 

  28. J. Qi, Y. Yan, Y. Cai, J. Cao and J. Feng, Nanoarchitectured design of vertical-standing arrays for supercapacitors: progress, challenges, and perspectives. Adv. Funct. Mater. 31(3), 2006030 (2020). https://doi.org/10.1002/adfm.202006030.

    Article  CAS  Google Scholar 

  29. Y. Yan, J. Lin, T. Xu, B. Liu, K. Huang, L. Qiao, S. Liu, J. Cao, S.C. Jun, Y. Yamauchi and J. Qi, Atomic-level platinum filling into Ni-vacancies of dual-deficient NiO for boosting electrocatalytic hydrogen evolution. Adv. Energy Mater. 12(24), 2200434 (2022). https://doi.org/10.1002/aenm.202200434.

    Article  CAS  Google Scholar 

  30. S. Ruan, W. Xin, C. Wang, W. Wan, H. Huang, Y. Gan, Y. Xia, J. Zhang, X. Xia, X. He and W. Zhang, An approach to enhance carbon/polymer interface compatibility for lithium-ion supercapacitors. J. Colloid Interface Sci. 652(Pt A), 1063–1073 (2023). https://doi.org/10.1016/j.jcis.2023.08.053.

    Article  CAS  PubMed  Google Scholar 

  31. E.R. Logan, A. Eldesoky, Y. Liu, M. Lei, X. Yang, H. Hebecker, A. Luscombe, M.B. Johnson and J.R. Dahn, The effect of LiFePO4 particle size and surface area on the performance of LiFePO4/graphite cells. J. Electrochem. Soc. 169(5), 050524 (2022). https://doi.org/10.1149/1945-7111/ac6aed.

    Article  CAS  Google Scholar 

  32. V.R. Rikka, S.R. Sahu, M. Gurumurthy, A. Chatterjee, S. Chandran, G. Sundararajan, R. Gopalan and R. Prakash, Temperature-derived fe dissolution of a LiFePO4/graphite cell at fast charging and high state-of-charge condition. Energy Technol. 11(11), 2201388 (2023). https://doi.org/10.1002/ente.202201388.

    Article  CAS  Google Scholar 

  33. J. Guo, Y. Li, Y. Chen, S. Deng, J. Zhu, S. Wang, J. Zhang, S. Chang, D. Zhang and X. Xi, Stable interface Co3O4-coated LiNi05Mn15O4 for lithium-ion batteries. J. Alloys Compd. 811, 152031 (2019). https://doi.org/10.1016/j.jallcom.2019.152031.

    Article  CAS  Google Scholar 

  34. S. Ruan, M. Shi, H. Huang, Y. Xia, J. Zhang, Y. Gan, X. Xia, X. He and W. Zhang, An innovative design of integrative polyaniline/carbon foam flexible electrode material with improved electrochemical performance. Mater. Today Chem. 29, 101435 (2023). https://doi.org/10.1016/j.mtchem.2023.101435.

    Article  CAS  Google Scholar 

  35. X. He, S. Ruan, Y. Chen, J. Zhang, C. Liang, H. Huang, Y. Gan, W. Zhang and Y. Xia, Rational design of highly efficient metal-polyaniline/carbon cloth catalyst towards enhanced oxygen reduction reaction. Ionics 26(10), 5065–5073 (2020). https://doi.org/10.1007/s11581-020-03666-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Science and Technology Project of the State Grid Corporation of China (Evolution mechanism of performance degradation and status sensing methods for lithium-ion battery energy storage system based on advanced acoustic sensing technology, Grant No. 520627230016), National Natural Science Foundation of China (Grant No. 52372235, 52073252, 22379020, 52002052), Science and Technology Department of Zhejiang Province (Grant No. 2023C01231), Key Research and Development Project of Science and Technology Department of Sichuan Province (Grant No. 2022YFSY0004), Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX0487).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Ruan, Wangjun Wan or Xinhui Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Ma, L., Xiao, S. et al. Aging Mechanisms and Evolution Patterns of Commercial LiFePO4 Lithium-Ion Batteries. J. Electron. Mater. 53, 2842–2851 (2024). https://doi.org/10.1007/s11664-024-11087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11087-9

Keywords

Navigation