Skip to main content

Advertisement

Log in

Advances in Supercapacitor Development: Materials, Processes, and Applications

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Global carbon reduction targets can be facilitated via energy storage enhancements. Energy derived from solar and wind sources requires effective storage to guarantee supply consistency due to the characteristic changeability of its sources. Supercapacitors (SCs), also known as electrochemical capacitors, have been identified as a key part of solving the problem. In addition, SCs can provide solutions to charging electric vehicles much faster than is possible using lithium-ion batteries. Nevertheless, further research into high-performance supercapacitor development is urgently needed to enable their use for effective large electricity storage. In general, energy utilization will subsequently depend on consumers/industries that are generating, storing and utilizing energy more effectively, with SCs being identified as one of the emerging technologies for intermittent energy storage, harvesting and high-power delivery. In this review, we have highlighted the historical information concerning the evolution of supercapacitor technology and its application as an energy storage device. A detailed account of the device’s electrode materials/electrolytes, processes, designs, and various applications is discussed. The primary characteristics of the energy storage system, such as capacitance/capacity, operating temperature, energy/power density, operating potential, kinetic storage mechanism, cycling lifetime, self-discharge, voltage holding/floating test, and the makeup of the electrode materials, are also briefly discussed. In addition, based on the current research scenario, the potential, challenges, and development patterns for SCs are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. B.E. Conway, Electrochemical Supercapacitors (Boston: Springer, 1999).

    Book  Google Scholar 

  2. F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).

    Article  Google Scholar 

  3. C.A. McGill, A brief History of A Brief History. Pop. Sci. 235, 70–72 (2010).

    Google Scholar 

  4. Miller, A brief history of supercapacitors, Batter. + Energy. ISSN: 521452 (2007) 61–78.

  5. K.O. Oyedotun, M.J. Madito, D.Y. Momodu, A.A. Mirghni, T.M. Masikhwa, and N. Manyala, Synthesis of Ternary NiCo-MnO2 Nanocomposite and its Application as a Novel High Energy Supercapattery Device. Chem. Eng. J. 335, 416–433 (2018).

    Article  CAS  Google Scholar 

  6. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, and J. Thomas, Asymmetric Supercapacitor Electrodes and Devices. Adv. Mater. 29, 1605336 (2017).

    Article  Google Scholar 

  7. G. Xiong, A. Kundu, and T.S. Fisher, Thermal Management in Electrochemical Energy Storage Systems. Springerbriefs Appl. Sci. Technol. 25, 1–10 (2015).

    Google Scholar 

  8. D. Institute of Fuel (Great Britain), Elsevier Science Ltd., Fuel and energy abstracts., [Published on behalf of the Institute of Fuel by IPC Science and Technology Press], (1995)

  9. T.L. Floyd and D. Buchla, Electronics Fundamentals: Circuits, Devices & Applications, 2009th ed., (NJ: Prentice Hall Press, 2009).

    Google Scholar 

  10. E. Frackowiak and F. Beguin, Carbon Materials for the Electrochemical Storage of Energy in Capacitors. Carbon 39, 937–950 (2001).

    Article  CAS  Google Scholar 

  11. B.E. Conway, Electrochemical Supercapacitors - Scientific Fundamentals (Berlin: Springer, 1999).

    Book  Google Scholar 

  12. A. Lahyani, P. Venet, A. Guermazi, and A. Troudi, Battery/Supercapacitors Combination in Uninterruptible Power Supply (UPS). IEEE Trans. Power Electron. 28, 1509–1522 (2013).

    Article  Google Scholar 

  13. Y.B. Tan and J.M. Lee, Graphene for Supercapacitor Applications. J. Mater. Chem. A 1, 14814–14843 (2013).

    Article  CAS  Google Scholar 

  14. F. Béguin, E. Raymundo-Piñero, and E. Frackowiak, Electrical Double-Layer Capacitors and Pseudocapacitors (Cambridge: CRC Press, 2009).

    Google Scholar 

  15. K.O. Oyedotun, Synthesis and characterization of carbon-based nanostructured material electrodes for designing novel hybrid supercapacitors, PhD diss., University of Pretoria (2018). http://hdl.handle.net/2263/67866

  16. A. Bard, L. Faulkner, J. Leddy, and C. Zoski, Electrochemical Methods: Fundamentals and Applications, Vol. 2 (NY: Wiley, 1980).

    Google Scholar 

  17. L.L. Zhang and X.S. Zhao, Carbon-Based Materials as Supercapacitor Electrodes. Chem. Soc. Rev. 38, 2520 (2009).

    Article  CAS  Google Scholar 

  18. A.G.G. Pandolfo and A.F.F. Hollenkamp, Carbon Properties and Their Role in Supercapacitors. J. Power Sources. 157, 11–27 (2006).

    Article  CAS  Google Scholar 

  19. M.A. Brown, Z. Abbas, A. Kleibert, R.G. Green, A. Goel, S. May, and T.M. Squires, Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface. Phys. Rev. X. 6, 011007 (2016).

    Google Scholar 

  20. Z. Wang, Y. Zhong, C. Wei, L. Jiang, and H. Liu, Review—Metal-Organic Framework-Based Supercapacitors. J. Electrochem. Soc. 169, 010516 (2022).

    Article  Google Scholar 

  21. P. Simon and Y. Gogotsi, Materials for Electrochemical Capacitors. Nat. Mater. 7, 845–854 (2008).

    Article  CAS  Google Scholar 

  22. D.P. Dubal, O. Ayyad, V. Ruiz, and P. Gómez-Romero, Hybrid Energy Storage: The MERGING of Battery and Supercapacitor Chemistries. Chem. Soc. Rev. 44, 1777–1790 (2015).

    Article  CAS  Google Scholar 

  23. G.G. Amatucci, F. Badway, A. Du Pasquier, and T. Zheng, An Asymmetric Hybrid Nonaqueous Energy Storage Cell. J. Electrochem. Soc. 148, A930 (2001).

    Article  CAS  Google Scholar 

  24. P. Forouzandeh, V. Kumaravel, and S.C. Pillai, Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts 10, 1–73 (2020).

    Article  Google Scholar 

  25. V. Khomenko, E. Raymundo-Piñero, and F. Béguin, High-Energy Density Graphite/AC Capacitor in Organic Electrolyte. J. Power Sources. 177, 643–651 (2008).

    Article  CAS  Google Scholar 

  26. T. Brousse, M. Toupin, and D. Bélanger, A Hybrid Activated Carbon-Manganese Dioxide Capacitor Using A Mild Aqueous Electrolyte. J. Electrochem. Soc. 151, A614 (2004).

    Article  CAS  Google Scholar 

  27. A.J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P.L. Taberna, Anomalous Capacitance Less Than INCREASE in Carbon at Pore Sizes. Science 313, 1760–1763 (2015).

    Article  Google Scholar 

  28. X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, and J. Su, Effect of Aqueous Electrolytes on the Electrochemical Behaviors of Supercapacitors Based on Hierarchically Porous Carbons. J. Power Sources. 216, 290–296 (2012).

    Article  CAS  Google Scholar 

  29. Q. Pan, W. Tu, L. Ding, and G. Mi, Characteristics of Electric Double Layer in Different Aqueous Electrolyte Solutions for Supercapacitors. Wuhan Univ. J Nat. Sci. 17, 200–204 (2012).

    Article  CAS  Google Scholar 

  30. K. Fic, G. Lota, and E. Frackowiak, Electrochemical Properties of Supercapacitors Operating in Aqueous Electrolyte with Surfactants. Electrochim. Acta. 55, 7484–7488 (2010).

    Article  CAS  Google Scholar 

  31. K. Fic, G. Lota, and E. Frackowiak, Effect of Surfactants on Capacitance Properties of Carbon Electrodes. Electrochim. Acta. 60, 206–212 (2012).

    Article  CAS  Google Scholar 

  32. P.W. Ruch, D. Cericola, A. Foelske-Schmitz, R. Kötz, and A. Wokaun, Aging of Electrochemical Double Layer Capacitors with Acetonitrile-Based Electrolyte at Elevated Voltages. Electrochim. Acta. 55, 4412–4420 (2010).

    Article  CAS  Google Scholar 

  33. E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, and F. Béguin, Relationship Between the Nanoporous Texture of Activated Carbons and Their Capacitance Properties in Different Electrolytes. Carbon N. Y. 44, 2498–2507 (2006).

    Article  Google Scholar 

  34. T. Abdallah, D. Lemordant, and B. Claude-Montigny, Are Room Temperature Ionic Liquids Able to Improve the Safety of Supercapacitors Organic Electrolytes Without Degrading the Performances? J. Power Sources. 201, 353–359 (2012).

    Article  CAS  Google Scholar 

  35. T. Sato, G. Masuda, and K. Takagi, Electrochemical Properties of Novel Ionic Liquids for Electric Double Layer Capacitor Applications. Electrochim. Acta. 49, 3603–3611 (2004).

    Article  CAS  Google Scholar 

  36. C.A. Angell, Y. Ansari, and Z. Zhao, Ionic Liquids: Past, Present and Future. Faraday Discuss. 154, 9–27 (2012).

    Article  Google Scholar 

  37. M. Galiński, A. Lewandowski, and I. Stepniak, Ionic Liquids as Electrolytes. Electrochim. Acta. 51, 5567–5580 (2006).

    Article  Google Scholar 

  38. A. Lewandowski and A. Świderska-Mocek, Ionic Liquids As Electrolytes for Li-ion Batteries—An Overview of Electrochemical Studies. J. Power Sources. 194, 601–609 (2009).

    Article  CAS  Google Scholar 

  39. K. Perzyna, R. Borkowska, J. Syzdek, A. Zalewska, and W. Wieczorek, The Effect of Additive of Lewis Acid Type on Lithium-Gel Electrolyte Characteristics. Electrochim. Acta. 57, 58–65 (2011).

    Article  CAS  Google Scholar 

  40. J. Syzdek, R. Borkowska, K. Perzyna, J.M. Tarascon, and W. Wieczorek, Novel Composite Polymeric Electrolytes with Surface-Modified Inorganic Fillers. J. Power Sources. 173, 712–720 (2007).

    Article  CAS  Google Scholar 

  41. J. Luo, A.H. Jensen, N.R. Brooks, J. Sniekers, M. Knipper, D. Aili, Q. Li, B. Vanroy, M. Wübbenhorst, F. Yan, L. Van Meervelt, Z. Shao, J. Fang, Z.H. Luo, D.E. De Vos, K. Binnemans, and J. Fransaer, 1,2,4-Triazolium Perfluorobutanesulfonate as an Archetypal Pure Protic Organic Ionic Plastic Crystal Electrolyte for All-Solid-State Fuel Cells. Energy Environ. Sci. 8, 1276–1291 (2015).

    Article  CAS  Google Scholar 

  42. J. Luo, O. Conrad, and I.F.J. Vankelecom, Imidazolium Methanesulfonate As A High Temperature Proton Conductor. J. Mater. Chem. A. 1, 2238–2247 (2013).

    Article  CAS  Google Scholar 

  43. S. Wu, Y. Xue, Q. Yang, Q. Hu, T. Cui, Q. Su, F. Yin, Y. Wang, and H. Zhan, Conductive Carbon Spheres-Supported Nickel-Cobalt Selenide Nanoparticles as A High-Performance and Long-Life Electrode for Supercapacitors. Diam. Relat. Mater. 111, 108187 (2021).

    Article  CAS  Google Scholar 

  44. J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, and L. Li, Metallic Fabrics As the Current Collector for High-Performance Graphene-Based Flexible Solid-State Supercapacitor. ACS Appl. Mater. Interfaces. 8, 4724–4729 (2016).

    Article  CAS  Google Scholar 

  45. K.O. Oyedotun, T.M. Masikhwa, S. Lindberg, A. Matic, P. Johansson, and N. Manyala, Comparison of Ionic Liquid Electrolyte to Aqueous Electrolytes on Carbon Nanofibres Supercapacitor Electrode Derived from Oxygen-Functionalized Graphene. Chem. Eng. J. 375, 121906 (2019).

    Article  CAS  Google Scholar 

  46. Q. Wang, J. Xu, X. Wang, B. Liu, X. Hou, G. Yu, P. Wang, D. Chen, and G. Shen, Core-Shell CuCo2O4@MnO2 Nanowires on Carbon Fabrics as High-Performance Materials for Flexible All-Solid-State, Electrochemical Capacitors. ChemElectroChem. 1, 559–564 (2014).

    Article  Google Scholar 

  47. G.P. Pandey, T. Liu, C. Hancock, Y. Li, X.S. Sun, and J. Li, Thermostable Gel Polymer Electrolyte Based on Succinonitrile and Ionic Liquid for High-Performance Solid-State Supercapacitors. J. Power Sources. 328, 510–519 (2016).

    Article  CAS  Google Scholar 

  48. L. Han, H. Huang, X. Fu, J. Li, Z. Yang, X. Liu, L. Pan, and M. Xu, A Flexible, High-Voltage and Safe Zwitterionic Natural Polymer Hydrogel Electrolyte for High-Energy-Density Zinc-Ion Hybrid Supercapacitor. Chem. Eng. J. 392, 123733 (2020).

    Article  CAS  Google Scholar 

  49. A.M. Patil, N. Kitiphatpiboon, X. An, X. Hao, S. Li, X. Hao, A. Abudula, and G. Guan, Fabrication of a High-Energy Flexible all-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti3C2T x-MXene and Battery-Type Reduced Graphene Oxide/Nickel-Cobalt Bimetal Oxide Electrode Materials. ACS Appl. Mater. Interfaces 12, 52749–52762 (2020).

    Article  CAS  Google Scholar 

  50. N.R. Chodankar, D.P. Dubal, A.C. Lokhande, and C.D. Lokhande, Ionically Conducting PVA–LiClO4 Gel Electrolyte for High Performance Flexible Solid-State Supercapacitors. J. Colloid Interface Sci. 460, 370–376 (2015).

    Article  CAS  Google Scholar 

  51. Y. Lv, L. Li, Y. Zhou, M. Yu, J. Wang, J. Liu, J. Zhou, Z. Fan, and Z. Shao, A Cellulose-Based Hybrid 2D Material Aerogel for a Flexible All-Solid-State Supercapacitor with High Specific Capacitance. RSC Adv. 7, 43512–43520 (2017).

    Article  CAS  Google Scholar 

  52. P. Du, X. Hu, C. Yi, H.C. Liu, P. Liu, H.-L. Zhang, X. Gong, P.C. Du, X. Hu, C. Yi, H.C. Liu, X. Gong, P. Liu, and H. Zhang, Self-Powered Electronics by Integration of Flexible Solid-State Graphene-Based Supercapacitors with High Performance Perovskite Hybrid Solar Cells. Adv. Funct. Mater. 25, 2420–2427 (2015).

    Article  CAS  Google Scholar 

  53. P. Arora and Z. Zhang, Battery Separators. Chem. Rev. 104, 4419–4462 (2004).

    Article  CAS  Google Scholar 

  54. S.S. Zhang, A review on the Separators of Liquid Electrolyte Li-ion Batteries. J. Power Sources. 164, 351–364 (2007).

    Article  CAS  Google Scholar 

  55. K.D. Verma, Characteristics of separator materials for supercapacitors, Handbook Nanocomposite Supercapacitor Materials I. (Cham: Springer, 2020), pp. 315–326.

    Chapter  Google Scholar 

  56. P. Zhu, D. Gastol, J. Marshall, R. Sommerville, V. Goodship, and E. Kendrick, A Review of Current Collectors for Lithium-Ion Batteries. J. Power Sources. 485, 229321 (2021). https://doi.org/10.1016/j.jpowsour.2020.229321.

    Article  CAS  Google Scholar 

  57. A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. van Schalkwijk, Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  58. O. Barbieri, M. Hahn, A. Herzog, and R. Kötz, Capacitance Limits of High Surface Area Activated Carbons for Double Layer Capacitors. Carbon N. Y. 43, 1303–1310 (2005).

    Article  CAS  Google Scholar 

  59. S. Rajagopal, R. Pulapparambil Vallikkattil, M. Mohamed Ibrahim, and D.G. Velev, Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress. Condens. Matter 7, 6 (2022).

    Article  CAS  Google Scholar 

  60. C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, and P. Simon, Relation Between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008).

    Article  CAS  Google Scholar 

  61. H. Lee, M.S. Cho, I.H. Kim, J. Do Nam, and Y. Lee, RuOx/Polypyrrole Nanocomposite Electrode for Electrochemical Capacitors. Synth. Met. 160, 1055–1059 (2010).

    Article  CAS  Google Scholar 

  62. D. Deng, Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 3, 385–418 (2015).

    Article  Google Scholar 

  63. F. Barzegar, Supercapacitor or Battery, (n.d.), SA Energy Storage, ee publishers (2018). https://www.ee.co.za/wp-content/uploads/2018/10/Dr-Farshad-Barzegar-University-of-Pretoria-presentation.pdf

  64. H. Pan, J. Li, and Y.P. Feng, Carbon Nanotubes for Supercapacitor. Nanoscale Res. Lett. 5, 654–668 (2010).

    Article  CAS  Google Scholar 

  65. H. Zhang, G. Cao, and Y. Yang, Carbon Nanotube Arrays and Their Composites for Electrochemical Capacitors and Lithium-Ion Batteries. Energy Environ. Sci. 2, 932–943 (2009).

    Article  CAS  Google Scholar 

  66. G. Wang, L. Zhang, and J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012).

    Article  CAS  Google Scholar 

  67. Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J.E. Fischer, B. Yi, H.C. Foley, and M.W. Barsoum, Nanoporous Carbide-Derived Carbon with Tunable Pore Size. Nat. Mater. 2, 591–594 (2003).

    Article  CAS  Google Scholar 

  68. V. Presser, M. Heon, and Y. Gogotsi, Carbide-Derived Carbons - from Porous Networks to Nanotubes and Graphene. Adv. Funct. Mater. 21, 810–833 (2011).

    Article  CAS  Google Scholar 

  69. G.N. Yushin, E.N. Hoffman, A. Nikitin, H. Ye, M.W. Barsoum, and Y. Gogotsi, Synthesis of Nanoporous Carbide-Derived Carbon by Chlorination of Titanium Silicon Carbide. Carbon N. Y. 43, 2075–2082 (2005).

    Article  CAS  Google Scholar 

  70. K.O. Oyedotun and N. Manyala, Graphene Foam–Based Electrochemical Capacitors. Curr. Opin. Electrochem. 21, 125–131 (2020).

    Article  CAS  Google Scholar 

  71. C. Peng, J. Jin, and G.Z. Chen, A Comparative Study on Electrochemical co-Deposition and Capacitance of Composite Films of Conducting Polymers and Carbon Nanotubes. Electrochim. Acta. 53, 525–537 (2007).

    Article  CAS  Google Scholar 

  72. C. Arbizzani, M. Mastragostino, and L. Meneghello, Polymer-Based Redox Supercapacitors: A Comparative Study. Electrochimica. Acta. 41, 21–26 (1996).

    Article  CAS  Google Scholar 

  73. M. Kalaji, P.J. Murphy, and G.O. Williams, The Study of Conducting Polymers for Use as Redox Supercapacitors. Synth. Met. 102, 1360–1361 (1999).

    Article  CAS  Google Scholar 

  74. W. Li, J. Chen, J. Zhao, J. Zhang, and J. Zhu, Application of Ultrasonic Irradiation in Preparing Conducting Polymer as Active Materials for Supercapacitor. Mater. Lett. 59, 800–803 (2005).

    Article  CAS  Google Scholar 

  75. H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, and S. Wang, Theoretical and Experimental Specific Capacitance of Polyaniline in Sulfuric Acid. J. Power Sources. 190, 578–586 (2009).

    Article  CAS  Google Scholar 

  76. M. Deschamps, E. Gilbert, P. Azais, E. Raymundo-Piñero, M.R. Ammar, P. Simon, D. Massiot, and F. Béguin, Exploring Electrolyte Organization in Supercapacitor Electrodes with Solid-State NMR. Nat. Mater. 12, 351–358 (2013).

    Article  CAS  Google Scholar 

  77. J.P. Zheng, The Limitations of Energy Density for Electrochemical Capacitors. J. Electrochem. Soc. 144, 2026 (1997).

    Article  CAS  Google Scholar 

  78. T. Liu, W.G. Pell, and B.E. Conway, Self-Discharge and Potential Recovery Phenomena at Thermally and Electrochemically Prepared RuO2 Supercapacitor Electrodes. Electrochim. Acta. 42, 3541–3552 (1997).

    Article  CAS  Google Scholar 

  79. Y.R. Ahn, M.Y. Song, S.M. Jo, C.R. Park, and D.Y. Kim, Electrochemical Capacitors Based on Electrodeposited Ruthenium Oxide on Nanofibre Substrates. Nanotechnology 17, 2865–2869 (2006).

    Article  CAS  Google Scholar 

  80. M. Toupin, T. Brousse, and D. Bélanger, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chem. Mater. 16, 3184–3190 (2004).

    Article  CAS  Google Scholar 

  81. K.-C. Liu, Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors. J. Electrochem. Soc. 143, 124 (1996).

    Article  CAS  Google Scholar 

  82. Y. Gao, S. Chen, D. Cao, G. Wang, and J. Yin, Electrochemical Capacitance of Co3O4 Nanowire Arrays Supported on Nickel Foam. J. Power Sources. 195, 1757–1760 (2010).

    Article  CAS  Google Scholar 

  83. N. Miura, S. Oonishi, and K.R. Prasad, Indium Tin Oxide/Carbon Composite Electrode Material for Electrochemical Supercapacitors. Electrochem. Solid-State Lett. 7, A247 (2004).

    Article  CAS  Google Scholar 

  84. X. Zhou, H. Chen, D. Shu, C. He, and J. Nan, Study on the Electrochemical Behavior of Vanadium Nitride as a Promising Supercapacitor Material. J. Phys. Chem. Solids 70, 495–500 (2009).

    Article  CAS  Google Scholar 

  85. J.P. Cheng, J. Zhang, and F. Liu, Recent Development of Metal Hydroxides as Electrode Material of Electrochemical Capacitors. RSC Adv. 4, 38893–38917 (2014).

    Article  CAS  Google Scholar 

  86. W. Zhang, F. Liu, Q. Li, Q. Shou, J. Cheng, L. Zhang, B.J. Nelson, and X. Zhang, Transition Metal Oxide and Graphene Nanocomposites for High-Performance Electrochemical Capacitors. Phys. Chem. Chem. Phys. 14, 16331 (2012).

    Article  CAS  Google Scholar 

  87. H. Chen, L. Hu, Y. Yan, R. Che, M. Chen, and L. Wu, One-Step Fabrication of Ultrathin Porous Nickel Hydroxide-Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance. Adv. Energy Mater. 3, 1636–1646 (2013).

    Article  CAS  Google Scholar 

  88. L. Feng, Y. Zhu, H. Ding, and C. Ni, Recent Progress in Nickel Based Materials for High Performance Pseudocapacitor Electrodes. J. Power Sources. 267, 430–444 (2014).

    Article  CAS  Google Scholar 

  89. A.A. Grupioni, E. Arashiro, and T.A. Lassali, Voltammetric Characterization of an Iridium Oxide-Based System: The Pseudocapacitive Nature of the Ir0.3Mn0.7O2 Electrode. Electrochim. Acta. 48, 407–418 (2002).

    Article  CAS  Google Scholar 

  90. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, Carbon-Based Composite Materials for Supercapacitor Electrodes: A Review. J. Mater. Chem. A. 5, 12653–12672 (2017).

    Article  CAS  Google Scholar 

  91. R. Sahoo, T.H. Lee, D.T. Pham, T.H.T. Luu, and Y.H. Lee, Fast-Charging High-Energy Battery-Supercapacitor Hybrid: Anodic Reduced Graphene Oxide-VANADIUM(IV) Oxide Sheet-on-Sheet Heterostructure. ACS Nano. 13, 10776–10786 (2019).

    Article  CAS  Google Scholar 

  92. Y. Zhou, K. Maleski, B. Anasori, J.O. Thostenson, Y. Pang, Y. Feng, K. Zeng, C.B. Parker, S. Zauscher, Y. Gogotsi, J.T. Glass, and C. Cao, Ti3C2Tx MXene-Reduced Graphene Oxide Composite Electrodes for Stretchable Supercapacitors. ACS Nano. 14, 3576–3586 (2020).

    Article  CAS  Google Scholar 

  93. J. Li, X. Cheng, A. Shashurin, M. Keidar, J. Li, X. Cheng, A. Shashurin, and M. Keidar, Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene. Graphene 1, 1–13 (2012).

    Article  Google Scholar 

  94. M. Toupin, T. Brousse, and D. Bélanger, Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide. Chem. Mater. 14, 3946–3952 (2002).

    Article  CAS  Google Scholar 

  95. T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. Bélanger, Nanostructured Transition Metal Oxides for Aqueous Hybrid Electrochemical Supercapacitors. Appl. Phys. A Mater. Sci. Process. 82, 599–606 (2006).

    Article  CAS  Google Scholar 

  96. T. Brousse, D. Belanger, and J.W. Long, To Be or Not To Be Pseudocapacitive? J. Electrochem. Soc. 162, A5185–A5189 (2015).

    Article  CAS  Google Scholar 

  97. W. Deng, X. Ji, Q. Chen, and C.E. Banks, Electrochemical Capacitors Utilising Transition Metal Oxides: an Update of Recent Developments. RSC Adv. 1, 1171–1178 (2011).

    Article  CAS  Google Scholar 

  98. M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, W.S. Chiu, and C.H. Chia, A Review of Metal Oxide Composite Electrode Materials for Electrochemical Capacitors. NANO 9, 1–25 (2014).

    Article  Google Scholar 

  99. C.Q. Yi, J.P. Zou, H.Z. Yang, and L. Xian, Recent Advances in Pseudocapacitor Electrode Materials: Transition Metal Oxides and Nitrides. Trans. Nonferrous Metals Soc. Chin. 28, 1980–2001 (2018).

    Article  CAS  Google Scholar 

  100. B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2, 1–17 (2017).

    Article  Google Scholar 

  101. A. Djire, A. Bos, J. Liu, H. Zhang, E.M. Miller, and N.R. Neale, Pseudocapacitive Storage in Nanolayered Ti2NTx MXene Using Mg-Ion Electrolyte. ACS Appl. Nano Mater. 2, 2785–2795 (2019).

    Article  CAS  Google Scholar 

  102. B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  103. B. Das, M. Behm, G. Lindbergh, M.V. Reddy, and B.V.R. Chowdari, High Performance Metal Nitrides, MN (M = Cr, Co) Nanoparticles for Non-Aqueous Hybrid Supercapacitors. Adv. Powder Technol. 26, 783–788 (2015).

    Article  CAS  Google Scholar 

  104. C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, S. Chen, and H.J. Fan, All Metal Nitrides Solid-State Asymmetric Supercapacitors. Adv. Mater. 27, 4566–4571 (2015).

    Article  CAS  Google Scholar 

  105. O. Sahnoun, H. Bouhani-Benziane, M. Sahnoun, and M. Driz, Magnetic and Thermoelectric Properties of Ordered Double Perovskite Ba2FeMoO6. J. Alloys Compd. 714, 704–708 (2017).

    Article  CAS  Google Scholar 

  106. I. Sfifir, A. Ezaami, W. Cheikhrouhou-Koubaa, and A. Cheikhrouhou, Critical Properties in Dy-doped La0.7−xDyxSr0.3MnO.3 (x=0.00, 0.03) Manganites. Ceram. Int. 43, 8784–8791 (2017).

    Article  CAS  Google Scholar 

  107. P. Forouzandeh and S.C. Pillai, Two-Dimensional (2D) Electrode Materials for Supercapacitors. Mater. Today Proc. 41, 498–505 (2020).

    Article  Google Scholar 

  108. G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen, and C.A. Mims, Rapid Oxygen ion Diffusion and Surface Exchange Kinetics in PrBaCo2O5+x with a Perovskite Related Structure and Ordered A Cations. J. Mater. Chem. 17, 2500–2505 (2007).

    Article  CAS  Google Scholar 

  109. G. George, S.L. Jackson, C.Q. Luo, D. Fang, D. Luo, D. Hu, J. Wen, and Z. Luo, Effect of Doping on the Performance of High-Crystalline SrMnO3 Perovskite Nanofibers as a Supercapacitor Electrode. Ceram. Int. 44, 21982–21992 (2018).

    Article  CAS  Google Scholar 

  110. P.P. Ma, B. Zhu, N. Lei, Y.K. Liu, B. Yu, Q.L. Lu, J.M. Dai, S.H. Li, and G.H. Jiang, Effect of Sr Substitution on Structure and Electrochemical Properties of Perovskite-Type LaMn0.9Ni0.1O3 Nanofibers. Mater. Lett. 252, 23–26 (2019).

    Article  CAS  Google Scholar 

  111. A. Navrotsky, Energetics and Crystal Chemical Systematic Among Ilmenite, Lithium Niobate, and Perovskite Structures. Chem. Mater. 10, 2787–2793 (1998).

    Article  CAS  Google Scholar 

  112. X. Li and H. Zhu, Two-Dimensional MoS2: Properties, Preparation, and Applications. J. Mater. 1, 33–44 (2015).

    Google Scholar 

  113. H. Zhang, Ultrathin Two-Dimensional Nanomaterials. ACS Nano Lecturesh. Award. 9, 9451–9469 (2015).

    Article  CAS  Google Scholar 

  114. S. Das, J.A. Robinson, M. Dubey, H. Terrones, and M. Terrones, Beyond Graphene: Progress in Novel Two-Dimensional Materials and Van Der Waals SOLIDS. Annu. Rev. Mater. Res. (2015). https://doi.org/10.1146/Annurev-Matsci-070214-021034.

    Article  Google Scholar 

  115. X. Huang, Z. Zeng, and H. Zhang, Metal Dichalcogenide Nanosheets: Preparation, Properties and Applications. Chem. Soc. Rev. 42, 1934–1946 (2013).

    Article  CAS  Google Scholar 

  116. J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, and Y. Xie, Metallic Few-Layered VS2 Ultrathin Nanosheets: High Two-Dimensional Conductivity for in-Plane Supercapacitors. J. Am. Chem. Soc. 133, 17832–17838 (2011).

    Article  CAS  Google Scholar 

  117. A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, and O.M. Yaghi, Porous Crystalline Covalent Organic Frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  Google Scholar 

  118. H. Ding, A. Mal, and C. Wang, Tailored Covalent Organic Frameworks by Post-Synthetic Modification. Mater. Chem. Front. 4, 113–127 (2019).

    Article  Google Scholar 

  119. C. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, and P. Van Der Voort, Strongly Reducing (diarylamino) Benzene-Based Covalent Organic Framework for Metal-Free Visible light Photocatalytic H2O2 Generation. J. Am. Chem. Soc. 142, 20107–20116 (2020).

    Article  CAS  Google Scholar 

  120. S. Chandra, D. Roy Chowdhury, M. Addicoat, T. Heine, A. Paul, and R. Banerjee, Molecular Level Control of the Capacitance of Two-Dimensional Covalent Organic Frameworks: Role of Hydrogen Bonding in Energy Storage Materials. Chem. Mater. 29, 2074–2080 (2017).

    Article  CAS  Google Scholar 

  121. File:2D COF conductivity.jpg - Wikimedia Commons, (n.d.). https://commons.wikimedia.org/wiki/File:2D_COF_conductivity.jpg#filelinks (accessed April 25, 2022).

  122. File:A chemical structure of the DAAQ-TFP covalent organic framework.png - Wikimedia Commons,(n.d.).https://commons.wikimedia.org/wiki/File:A_chemical_structure_of_the_DAAQ-TFP_covalent_organic_framework.png (accessed April 25, 2022).

  123. W. Yang, Z. Gao, J. Wang, J. Ma, M. Zhang, and L. Liu, Solvothermal One-Step Synthesis of Ni − Al Layered Double Hydroxide / Carbon Nanotube / Reduced Graphene Oxide Sheet Ternary Nanocomposite with Ultrahigh Capacitance for Supercapacitors. ACS Appl. Mater. Interfaces 5, 5443–5454 (2013).

    Article  CAS  Google Scholar 

  124. Metal-organic framework structure, molecular model - Stock Image - C049/3167 - Science Photo Library, (n.d.). https://www.sciencephoto.com/media/1120025/view (accessed March 30, 2022).

  125. MOF Metal Organic Framework - definition, fabrication and use, (n.d.). https://www.nanowerk.com/mof-metal-organic-framework.php (accessed April 26, 2022).

  126. B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W.D. Lou, and X. Wang, A Metal–Organic Framework-Derived Bifunctional Oxygen Electrocatalyst. Nat. Energy 1, 1–8 (2016).

    Article  Google Scholar 

  127. R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, and Y. Yamauchi, Asymmetric Supercapacitors Using 3D Nanoporous carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework. ACS Nano 9, 6288–6296 (2015).

    Article  CAS  Google Scholar 

  128. G. Huang, F. Zhang, X. Du, Y. Qin, D. Yin, and L. Wang, Metal Organic Frameworks Route to in Situ Insertion of Multiwalled Carbon Nanotubes in Co3o4polyhedra as Anode Materials for Lithium-Ion Batteries. ACS Nano 9, 1592–1599 (2015).

    Article  CAS  Google Scholar 

  129. L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, and B. Wang, Metal–Organic Frameworks for Energy Storage: Batteries and Supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016).

    Article  CAS  Google Scholar 

  130. M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, and M.W. Barsoum, New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013).

    Article  CAS  Google Scholar 

  131. M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L.M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S.J.L. Billinge, and M.W. Barsoum, Synthesis and Characterization of Two-Dimensional Nb4C3 (MXene). Chem. Commun. 50, 9517–9520 (2014).

    Article  CAS  Google Scholar 

  132. J.C. Gui, L. Han, and W.Y. Cao, Lamellar MXene: A Novel 2D Nanomaterial for Electrochemical Sensors. J. Appl. Electrochem. 51, 1509–1522 (2021).

    Article  CAS  Google Scholar 

  133. B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, and M.W. Barsoum, Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). ACS Nano 9, 9507–9516 (2015).

    Article  CAS  Google Scholar 

  134. M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 26, 992–1005 (2014).

    Article  CAS  Google Scholar 

  135. J. Chen, W. Yan, E.J. Townsend, J. Feng, L. Pan, V. Del Angel Hernandez, and C.F. Faul, Tunable Surface Area, Porosity, and Function in Conjugated Microporous Polymers. Angewandte Chemie Int. Ed. 58, 11715–11719 (2019).

    Article  CAS  Google Scholar 

  136. J. Chen, T. Qiu, W. Yan, and C.F.J. Faul, Exploiting Hansen Solubility Parameters to Tune Porosity and Function in Conjugated Microporous Polymers. J. Mater. Chem. A 8, 22657–22665 (2020).

    Article  CAS  Google Scholar 

  137. K. Amin, N. Ashraf, L. Mao, C.F.J. Faul, and Z. Wei, Conjugated Microporous Polymers for Energy Storage: Recent Progress and Challenges. Nano Energy 85, 105958 (2021).

    Article  CAS  Google Scholar 

  138. F. Xu, X. Chen, Z. Tang, D. Wu, R. Fu, and D. Jiang, Redox-Active Conjugated Microporous Polymers: A New Organic Platform for Highly Efficient Energy Storage. Chem. Commun. 50, 4788–4790 (2014).

    Article  CAS  Google Scholar 

  139. J.S.M. Lee and A.I. Cooper, Advances in Conjugated Microporous Polymers. Chem. Rev. 120, 2171–2214 (2020).

    Article  CAS  Google Scholar 

  140. A.I. Cooper, Conjugated Microporous Polymers. Adv. Mater. 21, 1291–1295 (2009).

    Article  CAS  Google Scholar 

  141. K.O. Oyedotun, F. Barzegar, A.A. Mirghni, A.A. Khaleed, T.M. Masikhwa, and N. Manyala, Examination of High-Porosity Activated Carbon Obtained from Dehydration of White Sugar for Electrochemical Capacitor Applications. ACS Sustain. Chem. Eng. 7, 537–546 (2019).

    Article  CAS  Google Scholar 

  142. K.O. Oyedotun, A.A. Mirghni, O. Fasakin, D.J. Tarimo, V.N. Kitenge, and N. Manyala, High-Energy Asymmetric Supercapacitor Based on the Nickel Cobalt Oxide (NiCo2O4) Nanostructure Material and Activated Carbon Derived from Cocoa Pods. Energy Fuels 35, 20309–20319 (2021).

    Article  CAS  Google Scholar 

  143. R.B. Choudhary, S. Ansari, and B. Purty, Robust Electrochemical Performance of Polypyrrole (PPy) and Polyindole (PIn) Based Hybrid Electrode Materials for Supercapacitor Application: A Review. J. Energy Storage. 29, 101302 (2020).

    Article  Google Scholar 

  144. N.M. Soudagar, V.K. Pandit, R.B. Pujari, K.B. Chorghade, C.D. Lokhande, and S.S. Joshi, Chemically Synthesized Polyaniline Supercapacitor. Int. J. Eng. Res. Technol. 10, 587–594 (2017).

    Google Scholar 

  145. M. Rajesh, C.J. Raj, R. Manikandan, B.C. Kim, S.Y. Park, and K.H. Yu, A High Performance PEDOT/PEDOT Symmetric Supercapacitor by Facile In-Situ Hydrothermal Polymerization of PEDOT Nanostructures on Flexible Carbon Fibre Cloth Electrodes. Mater. Today Energy 6, 96–104 (2017).

    Article  Google Scholar 

  146. C. Zhao, X. Wang, S. Wang, H. Wang, Y. Yang, and W. Zheng, Pseudocapacitive Properties of Cobalt Hydroxide Electrodeposited on Ni-Foam-Supported Carbon Nanomaterial. Mater. Res. Bull. 48, 3189–3195 (2013).

    Article  CAS  Google Scholar 

  147. H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, and G.W. Yang, Amorphous Nickel Hydroxide Nanospheres with Ultrahigh Capacitance and Energy Density as Electrochemical Pseudocapacitor Materials. Nat. Commun. 4, 1894 (2013).

    Article  CAS  Google Scholar 

  148. C. Han, H. Si, S. Sang, K. Liu, H. Liu, and Q. Wu, Carbon Dots Doped with Ni(OH)2as Thin-Film Electrodes for Supercapacitors. ACS Appl. Nano Mater. 3, 12106–12114 (2020).

    Article  CAS  Google Scholar 

  149. Y. Song, X. Cai, X. Xu, and X.X. Liu, Integration of Nickel–Cobalt Double Hydroxide Nanosheets and Polypyrrole Films with Functionalized Partially Exfoliated Graphite for Asymmetric Supercapacitors with Improved Rate Capability. J. Mater. Chem. A. 3, 14712–14720 (2015).

    Article  CAS  Google Scholar 

  150. S. Ramesh, K. Karuppasamy, H.M. Yadav, J.J. Lee, H.S. Kim, H.S. Kim, and J.H. Kim, Ni (OH) 2-Decorated Nitrogen Doped MWCNT Nanosheets as An Efficient Electrode for High Performance Supercapacitors. Sci. Rep. 9, 1–10 (2019).

    Article  Google Scholar 

  151. X. He, W. Yang, X. Mao, L. Xu, Y. Zhou, Y. Chen, Y. Zhao, Y. Yang, and J. Xu, All-Solid State Symmetric Supercapacitors Based on Compressible and Flexible Free-Standing 3D Carbon Nanotubes (CNTs)/Poly(3,4-ethylenedioxythiophene) (PEDOT) Sponge Electrodes. J. Power Sources. 376, 138–146 (2018).

    Article  CAS  Google Scholar 

  152. G. Wu, P. Tan, D. Wang, Z. Li, L. Peng, Y. Hu, C. Wang, W. Zhu, S. Chen, and W. Chen, High-Performance Supercapacitors Based on Electrochemical-Induced Vertical-Aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes. Sci. Rep. 7, 1–8 (2017).

    Google Scholar 

  153. R. Xue, Y.P. Zheng, D.Q. Qian, D.Y. Xu, Y.S. Liu, S.L. Huang, and G.Y. Yang, A 2-D Microporous Covalent Organic Framework for High-Performance Supercapacitor Electrode. Mater. Lett. 308, 131229 (2022).

    Article  CAS  Google Scholar 

  154. R. Iqbal, A. Badshah, Y.J. Ma, and L.J. Zhi, An Electrochemically Stable 2D Covalent Organic Framework for High-Performance Organic Supercapacitors. Chin. J. Polym. Sci. 38, 558–564 (2020).

    Article  CAS  Google Scholar 

  155. N. An, Z. Guo, J. Xin, Y. He, K. Xie, D. Sun, X. Dong, and Z. Hu, Hierarchical Porous Covalent Organic Framework/Graphene Aerogel Electrode for High-Performance Supercapacitors. J. Mater. Chem. A 9, 16824–16833 (2021).

    Article  CAS  Google Scholar 

  156. D.J. Li, S. Lei, Y.Y. Wang, S. Chen, Y. Kang, Z.G. Gu, and J. Zhang, Helical Carbon Tubes Derived from Epitaxial Cu-MOF Coating on Textile for Enhanced Supercapacitor Performance. Dalt. Trans. 47, 5558–5563 (2018).

    Article  CAS  Google Scholar 

  157. C. Qu, Y. Jiao, B. Zhao, D. Chen, R. Zou, K.S. Walton, and M. Liu, Nickel-Based Pillared MOFs for High-Performance Supercapacitors: Design, Synthesis and Stability Study. Nano Energy 26, 66–73 (2016).

    Article  CAS  Google Scholar 

  158. S. Venkateshalu, J. Cherusseri, M. Karnan, K.S. Kumar, P. Kollu, M. Sathish, J. Thomas, S.K. Jeong, and A.N. Grace, New Method for the Synthesis of 2D Vanadium Nitride (MXene) and its Application as a Supercapacitor Electrode. ACS Omega 5, 17983–17992 (2020).

    Article  CAS  Google Scholar 

  159. K.O. Oyedotun, D.Y. Momodu, M. Naguib, A.A. Mirghni, T.M. Masikhwa, A.A. Khaleed, and N. Manyala, Electrochemical Performance of Two-Dimensional Ti3C2-Mn3O4 Nanocomposites and Carbonized Iron Cations for Hybrid Supercapacitor Electrodes. Electrochimica. Acta. 301, 487–499 (2019).

    Article  CAS  Google Scholar 

  160. Q. Shan, X. Mu, M. Alhabeb, C.E. Shuck, D. Pang, X. Zhao, and Y. Dall’Agnese, Two-Dimensional Vanadium Carbide (V2C) MXene as Electrode for Supercapacitors with Aqueous Electrolytes. Electrochem. Commun. 96, 103–107 (2018).

    Article  CAS  Google Scholar 

  161. W. Lyu, W. Zhang, H. Liu, Y. Liu, H. Zuo, C. Yan, C.F.J. Faul, A. Thomas, M. Zhu, and Y. Liao, Conjugated Microporous Polymer Network Grafted Carbon Nanotube Fibers with Tunable Redox Activity for Efficient Flexible Wearable Energy Storage. Chem. Mater. 32, 8276–8285 (2020).

    Article  Google Scholar 

  162. Y. Kou, Y. Xu, Z. Guo, and D. Jiang, Supercapacitive Energy Storage and Electric Power Supply Using an aza-Fused π-Conjugated Microporous Framework. Angew. Chemie. 123, 8912–8916 (2011).

    Article  Google Scholar 

  163. Y. Liao, H. Wang, M. Zhu, A. Thomas, Y. Liao, H. Wang, M. Zhu, and A. Thomas, Efficient Supercapacitor Energy Storage Using Conjugated Microporous Polymer Networks Synthesized from Buchwald-Hartwig Coupling. Adv. Mater. 30, 1705710 (2018).

    Article  Google Scholar 

  164. J. Fischer, K. Thümmler, S. Fischer, I.G. Gonzalez Martinez, S. Oswald, and D. Mikhailova, Activated Carbon Derived from Cellulose and Cellulose Acetate Microspheres as Electrode Materials for Symmetric Supercapacitors in Aqueous Electrolytes. Energy Fuels 35, 12653–12665 (2021).

    Article  CAS  Google Scholar 

  165. M.N. Rantho, M.J. Madito, and N. Manyala, Symmetric Supercapacitor with Supercapattery Behavior Based on Carbonized Iron Cations Adsorbed Onto Polyaniline. Electrochim. Acta. 262, 82–96 (2018).

    Article  CAS  Google Scholar 

  166. A. Bello, F. Barzegar, M.J. Madito, D.Y. Momodu, A.A. Khaleed, T.M. Masikhwa, J.K. Dangbegnon, and N. Manyala, Electrochemical Performance of Polypyrrole Derived Porous Activated Carbon-Based Symmetric Supercapacitors in Various Electrolytes. RSC Adv. 6, 68141–68149 (2016).

    Article  CAS  Google Scholar 

  167. Y. Zhou, P. Jin, Y. Zhou, and Y. Zhu, High-Performance Symmetric Supercapacitors Based on Carbon Nanotube/Graphite Nanofiber Nanocomposites. Sci. Rep. 8, 1–8 (2018).

    Google Scholar 

  168. Y. Ma, D. Chen, Z. Fang, Y. Zheng, W. Li, S. Xu, X. Lu, G. Shao, Q. Liu, and W. Yang, High Energy Density and Extremely Stable Supercapacitors Based on Carbon Aerogels with 100% Capacitance Retention up to 65,000 Cycles. Proc. Natl. Acad. Sci. U. S. A. 118, 1–8 (2021).

    Article  Google Scholar 

  169. M. Ibrahim, H.N. Abdelhamid, A.M. Abuelftooh, S.G. Mohamed, Z. Wen, and X. Sun, Covalent Organic Frameworks (COFs)-Derived Nitrogen-Doped Carbon/Reduced Graphene Oxide Nanocomposite as Electrodes Materials for Supercapacitors. J. Energy Storage 55, 105375 (2022).

    Article  Google Scholar 

  170. M.G. Mohamed, S.V. Chaganti, S.U. Sharma, M.M. Samy, M. Ejaz, J.T. Lee, and S.W. Kuo, Constructing Conjugated Microporous Polymers Containing the Pyrene-4, 5, 9, 10-Tetraone Unit for Energy Storage. ACS Appl. Energy Mater. 5, 10130–10140 (2022).

    Article  CAS  Google Scholar 

  171. M.G. Mohamed, T.H. Mansoure, M.M. Samy, Y. Takashi, A.A.K. Mohammed, T. Ahamad, S.M. Alshehri, J. Kim, B.M. Matsagar, K.C.W. Wu, and S.W. Kuo, Ultrastable Conjugated Microporous Polymers Containing Benzobisthiadiazole and Pyrene Building Blocks for Energy Storage Applications. Molecules 27, 2025 (2022).

    Article  CAS  Google Scholar 

  172. A. Bello, F. Barzegar, M.J. Madito, D.Y. Momodu, A.A. Khaleed, T.M. Masikhwa, J.K. Dangbegnon, and N. Manyala, Stability Studies of Polypyrole- Derived Carbon Based Symmetric Supercapacitor Via Potentiostatic Floating Test. Electrochim. Acta. 213, 107–114 (2016).

    Article  CAS  Google Scholar 

  173. A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K.I. Ozoemena, and N. Manyala, Chemical Adsorption of NiO Nanostructures on Nickel Foam-Graphene for Supercapacitor Applications. J. Mater. Sci. 48, 6707–6712 (2013).

    Article  CAS  Google Scholar 

  174. M. Inagaki, H. Konno, and O. Tanaike, Carbon Materials for Electrochemical Capacitors. J. Power Sources. 195, 7880–7903 (2010).

    Article  CAS  Google Scholar 

  175. D. Weingarth, A. Foelske-Schmitz, A. Wokaun, and R. Kötz, PTFE Bound Activated Carbon - A Quasi-Reference Electrode for Ionic Liquids. Electrochem. Commun. 18, 116–118 (2012).

    Article  CAS  Google Scholar 

  176. D. Weingarth, A. Foelske-Schmitz, A. Wokaun, and R. Kotz, PTFE Bound Activated Carbon - A Quasi Reference Electrode for Ionic Liquids and its Application. ECS Trans. 50, 111–117 (2013).

    Article  Google Scholar 

  177. D.Y. Momodu, Investigation of metal hydroxides-graphene composites as electrode materials for supercapacitor applications., PhD diss. University of Pretoria (2015). http://hdl.handle.net/2263/50281

  178. J.R. Miller, A.F. Burke, Electric vehicle capacitor test procedures manual, Idaho Natl. Eng. Lab. (1994).

  179. M.D. Stoller and R.S. Ruoff, Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010).

    Article  CAS  Google Scholar 

  180. S. Shivakumara, B. Kishore, T.R. Penki, and N. Munichandraiah, Symmetric Supercapacitor Based on Partially Exfoliated and Reduced Graphite Oxide in Neutral Aqueous Electrolyte. Solid State Commun. 199, 26–32 (2014).

    Article  CAS  Google Scholar 

  181. W. Zhang, C. Ma, J. Fang, J. Cheng, X. Zhang, S. Dong, and L. Zhang, Asymmetric Electrochemical Capacitors with High Energy and Power Density Based on Graphene/CoAl-LDH and Activated Carbon Electrodes. RSC Adv. 3, 2483 (2013).

    Article  CAS  Google Scholar 

  182. K.O. Oyedotun, M.J. Madito, A. Bello, D.Y. Momodu, A.A. Mirghni, and N. Manyala, Investigation of Graphene Oxide Nanogel and Carbon Nanorods as Electrode for Electrochemical Supercapacitor. Electrochim. Acta. 245, 268–278 (2017).

    Article  CAS  Google Scholar 

  183. P.L. Taberna, P. Simon, and J.F. Fauvarque, Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. J. Electrochem. Soc. 150, A292 (2003).

    Article  CAS  Google Scholar 

  184. B. Akinwolemiwa, C. Peng, and G.Z. Chen, Redox Electrolytes in Supercapacitors. J. Electrochem. Soc. 162, A5054–A5059 (2015).

    Article  CAS  Google Scholar 

  185. C. Chukwuka, K.A. Folly, (2012). Batteries and super-capacitors. In IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica)

  186. A. Lasia, Electrochemical impedance spectroscopy and its applications, Modern Aspects of Electrochemistry. (Boston: Springer, 2002), pp. 143–248.

    Chapter  Google Scholar 

  187. S. Trasatti, Relative and Absolute Electrochemical Quantities. Components of the Potential Difference Across the Electrode/Solution Interface. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 70, 1752 (1974).

    CAS  Google Scholar 

  188. D.G. Grahame, The Electrical Double Layer and the Theory of Electrocapillarity. Chem. Rev. 41, 441–501 (1947).

    Article  CAS  Google Scholar 

  189. W. Sun, R. Zheng, and X. Chen, Symmetric Redox Supercapacitor Based on Micro-Fabrication with Three-Dimensional Polypyrrole Electrodes. J. Power Sources. 195, 7120–7125 (2010).

    Article  CAS  Google Scholar 

  190. J. Kowal, E. Avaroglu, F. Chamekh, A. Šenfelds, T. Thien, D. Wijaya, and D.U. Sauer, Detailed Analysis of the Self-Discharge of Supercapacitors. J. Power Sources. 196, 573–579 (2011).

    Article  CAS  Google Scholar 

  191. F. Barzegar, Synthesis and characterization of activated carbon materials for supercapacitor applications, PhD diss. University of Pretoria (2016). http://hdl.handle.net/2263/53524

  192. B.E. Conway, Similarities and differences between supercapacitors and batteries for storing electrical energy. In: Electrochemical Supercapacitors. (1999) 11–31.

  193. A.G. Olabi, Q. Abbas, A. Al Makky, and M.A. Abdelkareem, Supercapacitors as Next Generation Energy Storage Devices: Properties and Applications. Energy 248, 123617 (2022).

    Article  CAS  Google Scholar 

  194. J. Libich, J. Máca, J. Vondrák, O. Čech, and M. Sedlaříková, Supercapacitors: Properties and Applications. J. Energy Storage. 17, 224–227 (2018).

    Article  Google Scholar 

  195. F. Bu, W. Zhou, Y. Xu, Y. Du, C. Guan, and W. Huang, Recent Developments of Advanced Micro-Supercapacitors: Design, Fabrication and Applications. Npj Flex. Electron. 4, 1–16 (2020).

    Article  Google Scholar 

  196. T. Mesbahi, P. Bartholomeus, N. Rizoug, R. Sadoun, F. Khenfri, and P. Le Moigne, Advanced Model of Hybrid Energy Storage System Integrating Lithium-Ion Battery and Supercapacitor for Electric Vehicle Applications. IEEE Trans. Ind. Electron. 68, 3962–3972 (2021).

    Article  Google Scholar 

  197. A.H.M. Aman, N. Shaari, and R. Ibrahim, Internet of Things Energy System: Smart Applications, Technology Advancement, and Open Issues. Int. J. Energy Res. 45, 8389–8419 (2021).

    Article  Google Scholar 

  198. S. Ghosh, S.S. Withanage, B. Chamlagain, S.I. Khondaker, S. Harish, and B.B. Saha, Low Pressure Sulfurization and Characterization of Multilayer MoS2 for Potential Applications in Supercapacitors. Energy 203, 117918 (2020).

    Article  CAS  Google Scholar 

  199. C.Y. Hsieh, P. Pei, Q. Bai, A. Su, F.B. Weng, and C.Y. Lee, Results of a 200 HOURS Lifetime Test of a 7 kW Hybrid-Power Fuel Cell System on Electric Forklifts. Energy 214, 118941 (2021).

    Article  Google Scholar 

  200. A. Al-Zubaidi, X. Ji, and J. Yu, Thermal Charging of Supercapacitors: A Perspective, Sustain. Energy Fuels 1, 1457–1474 (2017).

    CAS  Google Scholar 

  201. K.V.G. Raghavendra, R. Vinoth, K. Zeb, C.V.M. Gopi, S. Sambasivam, M.R. Kummara, and H.J. Kim, An Intuitive Review of Supercapacitors with Recent Progress and Novel Device Applications. J. Energy Storage 31, 101652 (2020).

    Article  Google Scholar 

  202. L. Wang, L. Wen, Y. Tong, S. Wang, X. Hou, X. An, S.X. Dou, and J. Liang, Photo-Rechargeable Batteries and Supercapacitors: Critical Roles of Carbon-Based Functional Materials. Carbon Energy 3, 225–252 (2021).

    Article  CAS  Google Scholar 

  203. J.O. Ighalo, J.F. Amaku, C. Olisah, A.O. Adeola, K.O. Iwuozor, K.G. Akpomie, J. Conradie, K.A. Adegoke, and K.O. Oyedotun, Utilisation of Adsorption as a Resource Recovery Technique for Lithium in Geothermal Water. J. Mol. Liquids. 365, 120107 (2022).

    Article  CAS  Google Scholar 

  204. A.O. Adeola, K.O. Iwuozor, K.G. Akpomie, K.A. Adegoke, K.O. Oyedotun, J.O. Ighalo, J.F. Amaku, C. Olisah, and J. Conradie, Advances in the Management of Radioactive Wastes and Radionuclide Contamination in Environmental Compartments: A Review. Environ. Geochem. Health. (2022). https://doi.org/10.1007/s10653-022-01378-7.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all publishers of articles from which some of the figures have been adapted and/or reproduced.

Funding

The research received no outside funding.

Author information

Authors and Affiliations

Authors

Contributions

OKO: Conceptualization, Methodology, Writing—original draft; Writing—review & editing; Supervision; Validation; Project administration (https://orcid.org/0000-0001-5081-6372) IJO: Writing—review & editing; Validation (https://orcid.org/0000-0002-8709-100X) AJF: Writing—review & editing; Validation (https://orcid.org/0000-0003-4894-0512) OC: Writing—review & editing; Validation (https://orcid.org/0000-0002-7714-3056) AAO: Writing—review & editing; Validation (https://orcid.org/0000-0002-7011-2396) IKO: Writing—review & editing; Validation (https://orcid.org/0000-0002-1161-2147) AKG: Writing—review & editing; Validation (https://orcid.org/0000-0003-2986-4294) CJ: Writing—review & editing; Validation (https://orcid.org/0000-0002-8120-6830) AKA: Writing—review & editing; Validation (https://orcid.org/0000-0002-7502-0132).

Corresponding author

Correspondence to Kabir O. Oyedotun.

Ethics declarations

Conflict of interest

There are no conflicts of interest declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyedotun, K.O., Ighalo, J.O., Amaku, J.F. et al. Advances in Supercapacitor Development: Materials, Processes, and Applications. J. Electron. Mater. 52, 96–129 (2023). https://doi.org/10.1007/s11664-022-09987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09987-9

Keywords

Navigation