Skip to main content

Advertisement

Log in

Rational design of highly efficient metal-polyaniline/carbon cloth catalyst towards enhanced oxygen reduction reaction

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The key to sustainable energy application is the rational utilization of abundant materials on the earth. Fe, Co, and Cu theoretically exhibit high oxygen reduction capability close to Pt. However, their high diffusion behaviors make it difficult to homogeneously incorporate with carbon at elevated fabrication temperature. Here, polyaniline is developed an incorporated frame to realize the homodisperse of Fe, Co, or Cu. Three efficient oxygen reduction catalysts, including Fe-polyaniline/carbon (Fe-N/C), Co-N/C, and Cu-N/C are synthesized by a three-step method combining polymerization, complexation, and pyrolysis. All catalysts with metal doping reveal high catalytic activity, good cyclic stability, and the activity varies with different doping metal. The Fe-doped catalyst exhibits the best oxygen reduction ability with onset and half-wave potentials of − 104 mV and − 199.5 mV. Furthermore, the influence of complexation time and the pyrolysis temperature on the oxygen reduction activity are also studied systematically. These interesting discoveries may contribute to provide important ideas to oxygen reduction catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zheng YY, Qiao JH, Yuan JH, She JF, Wang AJ, Gong PJ (2018) One-pot synthesis of a PtPd dendritic nanocube cage superstructure on graphenes as advanced catalysts for oxygen reduction. Nanotechnology 29(10):10LT01–10LT11 https://iopscience.iop.org/article/10.1088/1361-6528/aaa809

    Article  Google Scholar 

  2. Gewirth AA, Varnell JA, DiAscro AM (2018) Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem Rev 118(5):2313–2339 https://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.7b00335

    Article  CAS  Google Scholar 

  3. Yang ZK, Wang Y, Zhu MZ, Li ZJ, Chen WX, Wei W, Yuan T, Qu Y, Xu Q, Zhao C, Wang X, Li P, Li Y, Wu Y, Li Y (2019) Boosting oxygen reduction catalysis with Fe-N-4 sites decorated porous carbons toward fuel cells. ACS Catal 9(3):2158–2163 https://pubs.acs.org/doi/10.1021/acscatal.8b04381

    Article  CAS  Google Scholar 

  4. Gong WH, Jiang Z, Wu RF, Liu Y, Huang L, Hu N, Tsiakaras P, Shen PK (2019) Cross-double dumbbell-like Pt-Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl Catal B-Environ 246:277–283. https://doi.org/10.1016/j.apcatb.2019.01.061

    Article  CAS  Google Scholar 

  5. Wang SH, Yan X, Wu KH, Chen XM, Feng JM, Lu P, Feng H, Cheng HM, Liang J, Dou SX (2019) A hierarchical porous Fe-N impregnated carbon-graphene hybrid for high-performance oxygen reduction reaction. Carbon 144:798–804. https://doi.org/10.1016/j.carbon.2018.12.066

    Article  CAS  Google Scholar 

  6. Li TF, Deng HJ, Liu JJ, Jin C, Song Y, Wang F (2019) First-row transition metals and nitrogen co-doped carbon nanotubes: the exact origin of the enhanced activity for oxygen reduction reaction. Carbon 143:859–868. https://doi.org/10.1016/j.carbon.2018.12.007

    Article  CAS  Google Scholar 

  7. Huang XY, You LX, Zhang XF, Feng JJ, Zhang L, Wang AJ (2019) L-proline assisted solvothermal preparation of Cu-rich rhombic dodecahedral PtCu nanoframes as advanced electrocatalysts for oxygen reduction and hydrogen evolution reactions. Electrochim Acta 299:89–97. https://doi.org/10.1016/j.electacta.2019.01.002

    Article  CAS  Google Scholar 

  8. Xu CY, Lin Z, Zhao D, Sun YL, Zhong YJ, Ning J, Zheng C, Zhang Z, Hu Y (2019) Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. J Mater Sci 54(7):5412–5423. https://doi.org/10.1007/s10853-018-03255-0

    Article  CAS  Google Scholar 

  9. Ferrero GA, Diez N, Sevilla M, Fuertes AB (2019) Iron/nitrogen Co-doped mesoporous carbon synthesized by an endo-templating approach as an efficient electrocatalyst for the oxygen reduction reaction. Microporous Mesoporous Mater 278:280–288. https://doi.org/10.1016/j.micromeso.2018.12.008

    Article  CAS  Google Scholar 

  10. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443(7107):63–66. https://doi.org/10.1038/nature05118

    Article  CAS  PubMed  Google Scholar 

  11. Li GC, Li J, Zhou ZW, Li CL, Cai C, Guo B, Priestley RD, Han L, Liu R (2017) Silica-polydopamine core-shell self-confined templates for ultra-stable hollow Pt anchored N-doped carbon electrocatalysts. Dalton Trans 46(47):16419–16425. https://doi.org/10.1039/C7DT03021E

    Article  CAS  PubMed  Google Scholar 

  12. He Y, Zhu C, Chen KJ, Wang J, Qin HY, Liu J, Yan S, Yang K, Li A (2017) Development of high-performance cathode catalyst of polypyrrole modified carbon supported CoOOH for direct borohydride fuel cell. J Power Sources 339:13–19. https://doi.org/10.1016/j.jpowsour.2016.11.021

    Article  CAS  Google Scholar 

  13. Yu Y, Gao L, Liu XC, Wang YH, Xing SX (2017) Enhancing the catalytic activity of zeolitic imidazolate framework-8-derived N-doped carbon with incorporated CeO2 nanoparticles in the oxygen reduction reaction. Chem-Eur J 23(44):10690–10697. https://doi.org/10.1002/chem.201702308

    Article  CAS  PubMed  Google Scholar 

  14. Liang HW, Wei W, Wu ZS, Feng XL, Mullen K (2013) Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J Am Chem Soc 135(43):16002–16005 https://pubs.acs.org/doi/10.1021/ja407552k

    Article  CAS  Google Scholar 

  15. Yang LL, Su YM, Li WM, Kan XW (2015) Fe/N/C electrocatalysts for oxygen reduction reaction in PEM fuel cells using nitrogen-rich ligand as precursor. J Phys Chem C 119(21):11311–11319 https://pubs.acs.org/doi/10.1021/jp511576q

    Article  CAS  Google Scholar 

  16. Liang H, Li CW, Chen T, Cui L, Han JR, Peng Z, Liu J (2018) Facile preparation of three-dimensional Co1-xS/sulfur and nitrogen-codoped graphene/carbon foam for highly efficient oxygen reduction reaction. J Power Sources 378:699–706. https://doi.org/10.1016/j.jpowsour.2018.01.013

    Article  CAS  Google Scholar 

  17. Zhang L, Liu XC, Wang YH, Chen G, Xing SX (2017) Dual role of polyaniline for achieving Ag dendrites and enhancing its oxygen reduction reaction catalytic activity. Chemistryselect 2(31):10300–10303. https://doi.org/10.1002/slct.201702290

    Article  CAS  Google Scholar 

  18. Zhang W, Wu ZY, Jiang HL, Yu SH (2014) Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J Am Chem Soc 136(41):14385–14388. https://doi.org/10.1021/ja5084128

    Article  CAS  PubMed  Google Scholar 

  19. Zhao XJ, Zhao HY, Zhang TT, Yan XC, Yuan Y, Zhang H, Zhao H, Zhang D, Zhu G, Yao X (2014) One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction. J Mater Chem A 2(30):11666–11671. https://doi.org/10.1039/C4TA00846D

    Article  CAS  Google Scholar 

  20. Chen YZ, Wang CM, Wu ZY, Xiong YJ, Xu Q, Yu SH, Jiang HL (2015) From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv Mater 27(34):5010–5016. https://doi.org/10.1002/adma.201502315

    Article  CAS  PubMed  Google Scholar 

  21. Chen YJ, Ji SF, Wang YG, Dong JC, Chen WX, Li Z, Shen R, Zheng L, Zhuang Z, Wang D, Li Y (2017) Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed 56(24):6937–6941. https://doi.org/10.1002/anie.201702473

    Article  CAS  Google Scholar 

  22. Li ZT, Yang TT, Zhao WN, Xu T, Wei LQ, Feng J, Yang X, Ren H, Wu M (2019) Structural modulation of Co catalyzed carbon nanotubes with Cu-Co bimetal active center to inspire oxygen reduction reaction. ACS Appl Mater Interfaces 11(4):3937–3945. https://doi.org/10.1021/acsami.8b18496

    Article  CAS  PubMed  Google Scholar 

  23. Kuang M, Wang QH, Han P, Zheng GF (2017) Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv Energy Mater 7(17):1700193–1700200. https://doi.org/10.1002/aenm.201700193

    Article  CAS  Google Scholar 

  24. Ghosh S, Sahu RK, Raj CR (2012) Pt-Pd alloy nanoparticle-decorated carbon nanotubes: a durable and methanol tolerant oxygen reduction electrocatalyst. Nanotechnology 23(38):385602–385609. https://doi.org/10.1088/0957-4484/23/38/385602

    Article  CAS  PubMed  Google Scholar 

  25. Zhu HY, Zhang S, Huang YX, Wu LH, Sun SH (2013) Monodisperse MxFe3-xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett 13(6):2947–2951. https://doi.org/10.1021/nl401325u

    Article  CAS  PubMed  Google Scholar 

  26. Zhu ZJ, Zhai YL, Dong SJ (2014) Facial Synthesis of PtM (M = Fe, Co, Cu, Ni) Bimetallic alloy nanosponges and their enhanced catalysis for oxygen reduction reaction. ACS Appl Mater Interfaces 6(19):16721–16726. https://doi.org/10.1021/am503689t

    Article  CAS  PubMed  Google Scholar 

  27. Xu P, Chen WZ, Wang Q, Zhu TS, Wu MJ, Qiao J, Chen Z, Zhang J (2015) Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction. RSC Adv 5(8):6195–6206. https://doi.org/10.1039/C4RA11643G

    Article  CAS  Google Scholar 

  28. Shen AL, Xia WJ, Zhang LP, Dou S, Xia ZH, Wang SY (2016) Charge transfer induced activity of graphene for oxygen reduction. Nanotechnology 27(18):185402–185408. https://doi.org/10.1088/0957-4484/27/18/185402

    Article  CAS  PubMed  Google Scholar 

  29. Li RC, Shao XF, Li SS, Cheng PP, Hu ZX, Yuan DS (2016) Metal-free N-doped carbon nanofibers as an efficient catalyst for oxygen reduction reactions in alkaline and acid media. Nanotechnology 27(50):505402–505409. https://doi.org/10.1088/0957-4484/27/50/505402

    Article  CAS  PubMed  Google Scholar 

  30. Zhang ZP, Yang SX, Dou ML, Liu HJ, Gu L, Wang F (2016) Systematic study of transition-metal (Fe, Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT. RSC Adv 6(71):67049–67056. https://doi.org/10.1039/C6RA12426G

    Article  CAS  Google Scholar 

  31. Liu X, Meng CG, Han Y (2013) Defective graphene supported MPd12 (M = Fe, Co, Ni, Cu, Zn, Pd) nanoparticles as potential oxygen reduction electrocatalysts: a first-principles study. J Phys Chem C 117(3):1350–1357. https://doi.org/10.1021/jp3090952

    Article  CAS  Google Scholar 

  32. Yu Y, Peng XL, Ali U, Liu XC, Xing Y, Xing SX (2019) Facile route to achieve bifunctional electrocatalysts for oxygen reduction and evolution reactions derived from CeO2 encapsulated by the zeolitic imidazolate framework-67. Inorg Chem Front 6(11):3255–3263. https://doi.org/10.1039/C9QI01025D

    Article  CAS  Google Scholar 

  33. Ji MJ, He B, Yu Y, Yu XD, Xing SX (2020) CeO2 encapsulated by iron, sulfur, and nitrogen-doped carbons for enhanced oxygen reduction reaction catalytic activity. Chemelectrochem 7(3):642–648. https://doi.org/10.1002/celc.201901796

    Article  CAS  Google Scholar 

  34. Hadidi L, Davari E, Ivey DG, Veinot JGC (2017) Microwave-assisted synthesis and prototype oxygen reduction electrocatalyst application of N-doped carbon-coated Fe3O4 nanorods. Nanotechnology 28(9):095707–095716. https://doi.org/10.1088/1361-6528/aa5716

    Article  CAS  PubMed  Google Scholar 

  35. Xiao CH, Chen X, Tang YH (2017) Surface-rough Fe-N/C composite wrapped on carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction. Nanotechnology 28(22):225401–225409. https://doi.org/10.1088/1361-6528/aa6ec3

    Article  CAS  PubMed  Google Scholar 

  36. Wang XJ, Huang WH, Liao SJ, Li BT (2018) High oxygen reduction activity of TM13@Pt-134 and TM12N@Pt-134 (TM = Ti, V, Mn, Fe, Co, Ni, and Cu) core-shell electrocatalysts studied by first-principles theory. Mater Chem Phys 212:378–384. https://doi.org/10.1016/j.matchemphys.2018.02.035

    Article  CAS  Google Scholar 

  37. Peng HL, Mo ZY, Liao SJ, Liang HG, Yang LJ, Luo F, Song H, Zhong Y, Zhang B (2013) High performance Fe- and N- doped carbon catalyst with graphene structure for oxygen reduction. Sci Rep-Uk 3:1765–1771. https://doi.org/10.1038/srep01765

    Article  CAS  Google Scholar 

  38. Li BY, Zhang YH, Du RF, Liu L, Yu XL (2018) Controllable synthesis of Co3O4 nanocrystals as efficient catalysts for oxygen reduction reaction. Nanotechnology 29(10):105401–105408. https://doi.org/10.1088/1361-6528/aaa688

    Article  CAS  PubMed  Google Scholar 

  39. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1(7):552–556. https://doi.org/10.1038/nchem.367

    Article  CAS  PubMed  Google Scholar 

  40. Khojasteh M, Haghighat S, Dawlaty JM, Kresin VV (2018) Controlled deposition of size-selected MnO nanoparticle thin films for water splitting applications: reduction of onset potential with particle size. Nanotechnology 29(21):215603–215611. https://doi.org/10.1088/1361-6528/aab543

    Article  CAS  PubMed  Google Scholar 

  41. Xu JJ, Zhang RF, Lu SY, Liu H, Li ZY, Zhang X, Ding S (2018) Ultrafast microwave-assisted synthesis of nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction. Nanotechnology 29(30):305708–305716. https://doi.org/10.1088/1361-6528/aac3f5

    Article  CAS  PubMed  Google Scholar 

  42. He XP, Xia Y, Liang C, Zhang J, Huang H, Gan Y, Zhao C, Zhang W (2019) A flexible non-precious metal Fe-N/C catalyst for highly efficient oxygen reduction reaction. Nanotechnology 30(14):144001–144009. https://doi.org/10.1088/1361-6528/aafc7c

    Article  CAS  PubMed  Google Scholar 

  43. Proietti E, Jaouen F, Lefevre M, Larouche N, Tian J et al (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416–424. https://doi.org/10.1038/ncomms1427

    Article  CAS  PubMed  Google Scholar 

  44. Qu LT, Liu Y, Baek JB, Dai LM (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326 https://pubs.acs.org/doi/10.1021/nn901850u

    Article  CAS  Google Scholar 

  45. Hu J, Liu Y, Wu G, Xiong Z, Chen P (2007) Structural and compositional changes during hydrogenation/dehydrogenation of the Li-Mg-N-H system. J Phys Chem C 111(49):18439–18443 https://pubs.acs.org/doi/10.1021/jp075757s

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (NO.21905249).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenkui Zhang or Yang Xia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Ruan, S., Chen, Y. et al. Rational design of highly efficient metal-polyaniline/carbon cloth catalyst towards enhanced oxygen reduction reaction. Ionics 26, 5065–5073 (2020). https://doi.org/10.1007/s11581-020-03666-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03666-7

Keywords

Navigation