Skip to main content
Log in

Acid Treatment of a Carbon Nanotube@Ordered Mesoporous Carbon Composite via a Simple Sonication Procedure: Sensitive Determination of Bisoprolol in Biological and Pharmaceutical Samples

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Based on the high specific surface area and electrical conductivity of carbon electrodes, in this work we have fabricated a carbon nanotube@ordered mesoporous carbon (CNT@CMK-3) composite by combining acid treatment and sonication. The CNT@CMK-3 composite after acid treatment retains a tubular and entangled framework. The CNT@CMK-3 nanostructure shows that CMK-3 is uniformly covered by CNTs. The acid-treated CNT@CMK-3 composites, due to the presence of –OH and –COOH groups on defects, show greatly increased hydrophilicity, solubility, tuning structure, real electrochemical active surface (of 0.22 cm2), and electron transfer kinetics. Furthermore, after 500 h, no precipitation is found for acid-treated CNT@CMK-3 dispersions, exhibiting excellent stability. Also, a sensitive electrochemical sensor based on CNT@CMK-3 was fabricated for bisoprolol (BIS) determination. Thin film of the acid-treated CNT@CMK-3 composite was cast on a carbon paste electrode (CPE), and selective and sensitive detection of BIS was studied at electro-oxidation potential of 998 mV, with a linear range of 0.1–35 μmol L−1, limit of detection of 0.05 μmol L−1, and sensitivity of 10.76 µA μmol−1 L. The presence of functional groups due to acid treatment improved the sensitivity, demonstrating effective electron transfer between CNT@CMK-3 and BIS. Finally, the developed sensor was successfully used to detect BIS in human serum and urine samples and tablets.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Groote, P.V. Ennezat, and F. Mouquet, Bisoprolol in the treatment of chronic heart failure. Vasc. Health Risk Manag. 3, 431 (2007)

    PubMed  PubMed Central  Google Scholar 

  2. W. Zeng, T.T.W. Chu, C.S. Ho, C.W.S. Lo, A.S.L. Chan, A.P.S. Kong, B. Tomlinson, S.W. Chan, and S. Baom, Lack of effects of renin-angiotensin-aldosterone system activity and beta-adrenoceptor pathway polymorphisms on the response to bisoprolol in hypertension. Front. Cardiovas. Med. 9, 842875 (2022)

    Article  CAS  Google Scholar 

  3. H. Ishiguro, T. Ikeda, A. Abe, T. Tsukada, H. Mera, K. Nakamura, S. Yusu, and H. Yoshino, Antiarrhythmic effect of bisoprolol, a highly selective beta-blocker, in patients with paroxysmal atrial fibrillation. Int. Heart J. 49, 281 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. M. Metra, S. Nodari, T. Bordonali, P. Milani, C. Lombardi, S. Bugatti, B. Fontanella, G. Verzura, R. Danesi, and L. Dei Cas, Bisoprolol in the treatment of chronic heart failure: from pathophysiology to clinical pharmacology and trial results. Ther. Clin. Risk Manag. 3, 569 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. W.D. Tucker and P.T. Kariyanna, Selective B1 blockers (Stat Pearls Publishing, 2019)

    Google Scholar 

  6. S. Tatar Ulu and Z. Aydogmus, An HPLC method for the determination of bisoprolol inhuman plasma and its applicationtoa pharmacokinetic study. J. Chromatogr. Sci. 50, 615 (2012)

    Article  CAS  Google Scholar 

  7. C. Oniscu, C.V. Vlase, and G. Peste, A new high performance liquid chromatographic method for determination of bisoprolol in plasma samples. Rom. Biotechnol. Lett. 12, 3079 (2007)

    CAS  Google Scholar 

  8. M.M. Zaki, N.S. Abdelwahob, A.A. Ali, and S.M. Zaki Sharkawi, Simultaneous determination of bisoprolol fumarate and rosuvastatin calcium in a new combined formulation by validated RP-HPLC. Eur. J. Chem. 10, 52 (2019)

    Article  CAS  Google Scholar 

  9. K. Cvan Trobec, J. Trontelj, J. Springer, M. Lainscak, and M. Kerec Kos, Liquid chromatography-tandem mass spectrometry method for simultaneous quantification of bisoprolol, ramiprilat, propranolol and midazolam in rat dried blood spots. J. Chromatogr. B 958, 29 (2014)

    Article  CAS  Google Scholar 

  10. D. Hong-Bing, C. Jun-Tao, W. Hui, and L. Yan-Ming, Determination of metoprolol tartrate and bisoprolol fumarate by capillary electrophoresis coupled with tris(2,2’-bipyridyl)-ruthenium(II) electrochemiluminescence detection and study on interaction between the drugs and human serum albumin. Anal. Methods 7, 3946 (2015)

    Article  Google Scholar 

  11. S.T. Ulu and E. Kel, Spectrophotometric determination of bisoprolol in pharmaceutical preparations by charge transfer reactions. Opt. Spectrosc. 112, 864 (2012)

    Article  CAS  Google Scholar 

  12. A.M. El-Didamony and A.M. Shehata, Spectrophotometric determination of β-adrenergic antagonists drugs via ion-pair complex formation using MO and EBT. Opt. Spectrosc. 117, 492 (2014)

    Article  CAS  Google Scholar 

  13. J. Giebultowicz, G. Kojro, K. Bus-Kwasnik, P.J. Rudzki, R. Marszalek, A. Les, and P. Wroczynski, Cloud-point extraction is compatible with liquid chromatography coupled to electrospray ionization mass spectrometry for the determination of bisoprolol in human plasma. J. Chromatogr. A 1423, 39 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. E.S. Melnikov, M.V. Belova, and G.V. Ramenskaya, Detection of acute overdose states by some antihypertensive drugs using gas chromatography-mass spectrometry. J. Anal. Chem. 69, 1337 (2014)

    Article  CAS  Google Scholar 

  15. M. Baecker, S. Beging, M. Biselli, A. Poghossian, J. Wang, W. Zang, P. Wagner, and M.J. Schoening, Concept for a solid-state multi-parameter sensor system for cell-culture monitoring. Electrochim. Acta 54, 6107 (2009)

    Article  CAS  Google Scholar 

  16. H. Bagheri Ladmakhi, F. Chekin, Sh. Fathi, and J.B. Raoof, Electrochemical sensor based on magnetite graphene oxide/ordered mesoporous carbon hybrid to detection of allopurinol in clinical samples. Talanta 211, 120759 (2020)

    Article  Google Scholar 

  17. H. Ling Poh and M. Pumera, Nanoporous carbon materials for electrochemical sensing. Chem. Asian J. 7, 412 (2012)

    Article  Google Scholar 

  18. S. Joseph, D.M. Kempaiah, M.R. Benzigar, H. Ilbeygi, G. Singh, S.N. Talapaneni, D.H. Park, and A. Vinu, Highly ordered mesoporous carbons with high specific surface area from carbonated soft drink for supercapacitor application. Micropor. Mesopor. Mater. 280, 337 (2019)

    Article  CAS  Google Scholar 

  19. P. Zhang, L. Wang, Sh. Yang, J.A. Schott, X. Liu, Sh.M. Mahurin, C. Huang, Y. Zhang, P.F. Fulvio, M.F. Chisholm, and Sh. Dai, Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking. Nat. Commun. 8, 15020 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  20. R. Li, E.F. Antunes, E. Kalfon-Cohen, A. Kudo, L. Acauan, W.D. Yang, C. Wang, K. Cui, A.H. Liotta, A.G. Rajan, J. Gardener, D.C. Bell, M.S. Strano, J.A. Liddle, R. Sharma, and B.L. Wardle, Low temperature growth of carbon nanotubes catalyzed by sodium-based ingredients. Angew. Chem. Int. Ed. 58, 9204 (2019)

    Article  CAS  Google Scholar 

  21. G.E. Fenoy, W.A. Marmisollé, W. Knoll, and O. Azzaroni, Highly sensitive urine glucose detection with graphene field-effect transistors functionalized with electropolymerized nanofilms. Sens. Diagn. 1, 139 (2022)

    Article  CAS  Google Scholar 

  22. M. Ahmad and S.R.P. Silva, Low temperature growth of carbon nanotubes. Carbon 158, 24 (2020)

    Article  CAS  Google Scholar 

  23. B. Krause, G. Petzold, S. Pegel, and P. Pötschke, Correlation of carbon nanotube dispersability in aqueous surfactant solutions and polymers. Carbon 47, 602 (2009)

    Article  CAS  Google Scholar 

  24. R.A. Moraes, C.F. Matos, E.G. Castro, W.H. Schreiner, M.M. Oliveirac, and A.J.G. Zarbin, The effect of different chemical treatments on the structure and stability of aqueous dispersion of iron- and iron oxide-filled multi-walled carbon nanotubes. J. Braz. Chem. Soc. 22, 2191 (2011)

    Article  CAS  Google Scholar 

  25. A. Hosseini Fakhrabad, R. Sanavi Khoshnood, M.R. Abedib, and M. Ebrahimi, Fabrication a composite carbon paste electrodes (CPEs) modified with multi-wall carbon nanotubes (MWCNTs/N, N-Bis (salicyliden)-1,3-propandiamine) for determination of lanthanum (III). Eur. Chem. Commun. 3, 627 (2021)

    Google Scholar 

  26. H. Cui, X. Yan, M. Monasterio, and F. Xing, Effects of various surfactants on the dispersion of MWCNTs–OH in aqueous solution. Nanomaterials 7, 262 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sh. Nikkhah, H. Tahermansouri, and F. Chekin, Synthesis, characterization, and electrochemical properties of the modified graphene oxide with 4,4׳-methylenedianiline. Mater. Lett. 211, 323 (2018)

    Article  CAS  Google Scholar 

  28. B. Zareyy, F. Chekin, and Sh. Fathi, NiO/porous reduced graphene oxide as active hybrid electrocatalyst for oxygen evolution reaction. Russ. J. Electrochem. 55, 333 (2019)

    Article  CAS  Google Scholar 

  29. R. Bagchi, M. Elshazly, J. N’Diaye, D. Yu, J.Y. Howe, and K. Lian, Effects of carboxyl functionalized CNT on electrochemical behaviour of polyluminol-CNT composites. Chemistry 4, 1561 (2022)

    Article  CAS  Google Scholar 

  30. K. Yan, X. Sun, Sh. Ying, W. Cheng, Y. Deng, Zh. Ma, Y. Zhao, X. Wang, L. Pan, and Y. Shi, Ultrafast microwave synthesis of rambutan-like CMK-3/carbon nanotubes nanocomposites for high-performance supercapacitor electrode materials. Sci. Rep. 10, 6227 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Y. Yoo, M. Seop Kim, J. Kook Kim, Y. Sin Kim, and W. Kim, Fast-response supercapacitors with graphitic ordered mesoporous carbons and carbon nanotubes for AC line filtering. J. Mater. Chem. A 4, 5062 (2016)

    Article  CAS  Google Scholar 

  32. Ch. Seung Dae, L. Ju Hyun, P. Da Min, and K. Geonjoong, Fabrication of CNT/CMK3 carbon composites with high electrical/thermal conductive properties. Bull. Korean Chem. Soc. 34, 2155 (2013)

    Article  Google Scholar 

  33. T. Kavinkumar and S. Manivannan, Synthesis, characterization and gas sensing properties of graphene oxide-multiwalled carbon nanotube composite. J. Mater. Sci. Technol. 32, 626 (2016)

    Article  CAS  Google Scholar 

  34. N. Hazhir, F. Chekin, J.B. Raoof, and Sh. Fathi, Porous reduced graphene oxide/chitosan-based nanocarrier for delivery system of doxorubicin. RSC Adv. 9, 30729 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R.N. Goyal, S. Chatterjee, S.P. Singh, A.R. Singh Rana, and H. Chasta, The electrocatalytic activity of bare pyrolytic graphite and single wall carbon nanotube modified glassy carbon sensors is same for the quantification of bisoprolol fumarate. Am. J. Anal. Chem. 3, 106 (2012)

    Article  CAS  Google Scholar 

  36. R.A. Zil’berga, Y.A. Yarkaeva, A.V. Sidel’nikov, V.N. Maistrenko, V.A. Kraikin, and N.G. Gileva, Voltammetric determination of bisoprolol on a glassy carbon electrode modified by poly(arylene phthalide). J. Anal. Chem. 71, 926 (2016)

    Article  Google Scholar 

  37. B. Bozal, M. Gumustas, B. Dogan-Topal, B. Uslu, and S.A. Ozkan, Fully validated simultaneous determination of bisoprolol fumarate and hydrochlorothiazide in their dosage forms using different voltammetric, chromatographic, and spectrophotometric analytical methods. J. AoAC Int. 96, 42 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. R.N. Goyal, A. Tyagi, N. Bachheti, and S. Bishnoi, Voltammetric determination of bisoprolol fumarate in pharmaceutical formulations and urine using single-wall carbon nanotubes modified glassy carbon electrode. Electrochim. Acta 53, 2802 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the research support by the Ayatollah Amoli Branch of the Islamic Azad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Chekin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshmiri, K., Sabeti, B. & Chekin, F. Acid Treatment of a Carbon Nanotube@Ordered Mesoporous Carbon Composite via a Simple Sonication Procedure: Sensitive Determination of Bisoprolol in Biological and Pharmaceutical Samples. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11081-1

Keywords

Navigation