Skip to main content
Log in

A Multifunctional Lead-Free Ferroelectric Transparent Ceramic (K0.5Na0.5)NbO3 Modified by Sr(Bi0.5Nb0.5)O3 with High Transmittance

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(1 − x)(K0.5Na0.5)NbO3-xSr(Bi0.5Nb0.5)O3 (KNN-xSBN, x = 0.02, 0.03, 0.04, 0.05, 0.06, 0.07) ceramics were designed and prepared by solid-phase method. The effects of different SBN content in solid solution on the transmittance, microstructure, phase structure, ferroelectric properties, and energy storage properties of ceramic samples were studied. After adding the second component SBN, the phase structure of KNN ceramics changes from tetragonal phase structure to cubic phase structure, and the grain size reaches the micron level, so that it exhibits good light transmittance and also retains good ferroelectricity, energy storage, and other performance parameters. It is a multifunctional material with excellent performance. When x = 0.06, the transmittance of the ceramic sample is the highest; the transmittance in the visible light band (780 nm) reaches 64.64%, and the transmittance in the near-infrared band reaches 71.68% (1100 nm); when x = 0.07, energy storage efficiency η reaches 74%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Zhan, L.Q. An, M. Liu, S. Shimai, and S.W. Wang, Sintering of Yb3+: Y2O3 transparent ceramics in hydrogen atmosphere. J. Eur. Ceram. Soc. 29, 305–309 (2009).

    Article  Google Scholar 

  2. Y. He, Y.X. Cai, L. Zhang, K.G. Liu, G. Liu, B.X. Xiang, J.P. Zhai, L.B. Kong, T.S. Zhang, and Y. Liu, Rapid fabrication of extremely thin Nano-Al2O3 transparent ceramic wafers through nonaqueous tape casting. Ceram. Int. 47, 30677–30684 (2021).

    Article  CAS  Google Scholar 

  3. S. Chen and Y. Wu, New opportunities for transparent ceramics. J. Am. Ceram. Soc. Bull. 92, 32–37 (2013).

    CAS  Google Scholar 

  4. H.T. Wu, G.B. Hu, S.Y. Shi, X. Liu, H. Wang, J.W. Xu, L. Yang, W. Qiu, and S.J. Zhou, Effect of Ho addition on the optical and electrical properties of 0.98KNN-0.02SYT ceramics. J. Electron. Mater. 51, 831–837 (2022).

    Article  CAS  Google Scholar 

  5. G.R. Li, W. Ruan, J.T. Zeng, H.R. Zeng, L.Y. Zheng, L.S. Kamzina, Y. Kopylov, and V. Kravchenko, The effect of domain structures on the transparency of PMN-PT transparent ceramics. Opt. Mater. 35, 722–726 (2013).

    Article  CAS  Google Scholar 

  6. C.Y. Li, M.W. Yao, W.B. Gao, and X. Yao, High breakdown strength and energy density in antiferroelectric PLZST ceramics with Al2O3 buffer. Ceram. Int. 46, 722–730 (2020).

    Article  Google Scholar 

  7. Y.B. Sun, H. Wang, G.B. Liu, H. Xie, C.R. Zhou, G.H. Chen, C.L. Yuan, and J.W. Xu, High energy storage efficiency and high electrostrictive coefficients in BNT-BS-xBT ferroelectric ceramics. J. Mater. Sci. Mater. Electron. 31, 5546–5553 (2020).

    Article  CAS  Google Scholar 

  8. X. Zeng, X.Y. He, W.X. Cheng, P.S. Qiu, and B. Xia, Effect of Dy substitution on ferroelectric, optical and electrooptic properties of transparent Pb0.90La0.10 (Zr0.65Ti0.35) O3. Ceram. Int. 40, 6197–6202 (2014).

    Article  CAS  Google Scholar 

  9. H. Ji, W. Ren, L. Wang, P. Shi, X. Chen, X. Wu, and X. Yao, Effect of Dy substitution on ferroelectric, optical and electrooptic properties of transparent Pb0.90La0.10 (Zr0.65Ti0.35) O3. J. Am. Ceram. Soc. 94, 3425–3430 (2011).

    Article  CAS  Google Scholar 

  10. Y. Cao, K. Zhu, H. Zheng, J. Qiu, and H. Gu, Synthesis of potassium sodium niobate powders using an EDTA/citrate complexing Sol–Gel method. Particuology 10, 777–782 (2012).

    Article  CAS  Google Scholar 

  11. Y. Hou, C. Wang, J. Zhao, H. Ge, M. Zhu, and H. Yan, The fine-grained KNN-LN ceramics densified from nanoparticles obtained by an economical sol–gel route. Mater. Chem. Phys. 134, 518–522 (2012).

    Article  CAS  Google Scholar 

  12. L. Bai, K. Zhu, J. Qiu, H. Ji, and L. Su, Phase evolution of (K, Na)NbO3 powder prepared by high temperature mixing under hydrothermal conditions. Particuology 8, 477–481 (2010).

    Article  CAS  Google Scholar 

  13. G. Stavber, B. Malic, and M. Kosec, A road to environmentally friendly materials chemistry: low-temperature synthesis of nanosized K0.5Na0.5NbO3 powders through peroxide intermediates in water. Green Chem. 13, 1303–1310 (2011).

    Article  CAS  Google Scholar 

  14. M.R. Kannan, A. Logeswari, M. William Carry, and T. Vijayakumar, Synthesis and investigation of (1−x)K0.5Na0.5NbO3−(x)CaSnO3 lead free perovskite ceramics of high dielectric and piezoelectric properties for transducer applications. J. Mater. Sci. Mater. Electron. 33, 9224–9234 (2022).

    Article  CAS  Google Scholar 

  15. L. Gao, W.C. Zhou, F. Luo, D.M. Zhu, and J. Wang, Dielectric and microwave absorption properties of KNN/Al2O3 composite ceramics. Ceram. Int. 43, 12731–12735 (2017).

    Article  CAS  Google Scholar 

  16. X.Z. Wang, Y. Huan, Z.X. Wang, X.J. Lin, S.F. Huang, T. Wei, L.T. Li, and X.H. Wang, Electrical conduction and dielectric relaxation mechanisms in the KNN-based ceramics. J. Appl. Phys. 126, 104101 (2019).

    Article  Google Scholar 

  17. Z.C. Sun, B.J. Xu, F. Jin, G.X. Zhou, and L. Lin, Machine learning approach for on-demand rapid constructing metasurface. IEEE J. Sel. Top. Quantum Electron. 28, 1–9 (2022).

    CAS  Google Scholar 

  18. J. Du, J.F. Wang, G.Z. Zang, and X.J. Yi, Ca0.5Sr0.5TiO3-modified KNN-based lead-free piezoceramics with a wide temperature usage span. J. Wuhan Univ. Technol. Mater. Sci. Ed. 28, 067701 (2011).

    Google Scholar 

  19. H.N. Liu, J.T. Wang, H. Wang, J.W. Xu, C.R. Zhou, and W. Qiu, Er3+ and Sr(Bi0.5Nb0.5)O3-modified (K0.5Na0.5)NbO3: a new transparent fluorescent ferroelectric ceramic with high light transmittance and good luminescence performance. Ceram. Int. 48, 4230–4237 (2022).

    Article  CAS  Google Scholar 

  20. D. Yang, C. Ma, Z. Yang, L. Wei, X. Chao, Z. Yang, and J. Yang, Optical and electrical properties of pressureless sintered transparent (K0.37Na0.63)NbO3-based ceramics. Ceram. Int. 42, 4648–4657 (2016).

    Article  CAS  Google Scholar 

  21. M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, and J. Holc, New lead-free relaxors based on the K0.5Na0.5Nb0.30-SrTi0.3 solid solution. J. Mater. Res. 19, 1849–1854 (2004).

    Article  CAS  Google Scholar 

  22. F. Li and K.W. Kwok, Fabrication of transparent electro-optic (K0.5Na0.5)1−xLixNb1x BixO3 lead-free ceramics. J. Eur. Ceram. Soc. 33, 123–139 (2013).

    Article  Google Scholar 

  23. Q.Z. Chai, X.M. Zhao, P.F. Liang, D. Wu, X.L. Chao, and Z.P. Yang, Excellent near-infrared transparency realized in low-symmetry orthorhombic (K, Na)NbO3-based submicron ceramics. Scr. Mater. 154, 64–67 (2018).

    Article  CAS  Google Scholar 

  24. F.G. Mohammadi, and M.S. Abadeh, A new metaheuristic feature subset selection approach for image steganalysis. J. Intell. Fuzzy Syst. 27, 1445–1455 (2014).

    Article  Google Scholar 

  25. K.W. Kwok, F. Li, and D. Lin, A novel lead-free transparent ceramic with high electro-optic coefficient. Funct. Mater. Lett. 04, 237–240 (2011).

    Article  CAS  Google Scholar 

  26. H. Du, W. Zhou, D. Zhu, L. Fa, S. Qu, and Y. Li, J. Am. Ceram. Soc. 91, 2903–2909 (2008).

    Article  CAS  Google Scholar 

  27. R.Z. Zuo, X.S. Fang, and C. Ye, Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3-(Bi0.5Na0.5)TiO3 ceramics. Appl. Phys. Lett. 90, 092904 (2007).

    Article  Google Scholar 

  28. D. Damjanovic, N. Klein, J. Li, and V. Porokhonskyy, What can be expected from lead-free piezoelertic materials? Funct. Mater. Lett. 3, 5–13 (2010).

    Article  CAS  Google Scholar 

  29. H.T. Wu, S.Y. Shi, X. Liu, H. Wang, J.W. Xu, L. Yang, W. Qiu, and S.J. Zhou, The Ba(Bi0.5Ta0.5)O3 modified (K0.5Na0.5)NbO3 lead-freetransparent ferroelectric ceramics with high transmittance and excellent energy storage performance. J. Mater. Sci. Mater. Electron. 33, 16045–16055 (2022).

    Article  CAS  Google Scholar 

  30. G.B. Hu, H.N. Liu, J.T. Wang, Y.B. Sun, H. Wang, J.W. Xu, and L. Yang, Regulating the structural, regulating the structural, transmittance, ferroelectric, and energy storage properties of K0.5Na0.5NbO3 ceramics using Sr(Yb0.5Nb0.5)O3. J. Electron. Mater. 50, 968–977 (2021).

    Article  CAS  Google Scholar 

  31. G.B. Hu, J.T. Wang, X. Liu, H.N. Liu, H. Wang, J.W. Xu, L. Yang, C.R. Zhou, and W. Qiu, Structural, transmittance, ferroelectric, energy storage, and electrical properties of K0.5Na0.5NbO3 ceramics regulated by Sr(Yb0.5Ta0.5)O3. J. Mater. Sci. Mater. Electron. 32, 22300–22308 (2021).

    Article  CAS  Google Scholar 

  32. J.F. Lin, P. Wang, H.J. Wang, Y.J. Shi, K. Zhu, F. Yan, G.H. Li, H.H. Ye, J.W. Zhai, and X. Wu, Significantly photo-thermochromic knn-based “smart window” for sustainable optical data storage and anti-counterfeiting. Adv. Opt. Mater. 9, 2100580 (2021).

    Article  CAS  Google Scholar 

  33. X.L. Chao, X.D. Ren, X.S. Zhang, Z.H. Peng, J.J. Wang, P.F. Liang, D. Wu, and Z.P. Yang, Excellent optical transparency of potassium-sodium niobate-based lead-free relaxor ceramics induced by fine grains. J. Eur. Ceram. Soc. 39, 3684–3692 (2019).

    Article  CAS  Google Scholar 

  34. T. Huang, D.Q. Xiao, W.F. Liang, J.G. Wu, Z. Wang, and J.G. Zhu, Sintering behavior of KNN-BNKT lead-free piezoelectric ceramics. Ferroelectrics 458, 37–42 (2014).

    Article  CAS  Google Scholar 

  35. J.H. Xing, F. Shang, L. Li, and G.H. Chen, Structure, up-conversion luminescence and optical temperature sensitive properties of glass ceramics containing Ca5(PO4)3F with double luminescence centers. Ceram. Int. 48, 1098–1106 (2022).

    Article  CAS  Google Scholar 

  36. M. Zhang, H.B. Yang, D. Li, and Y. Lin, J. Alloys Compd. 829, 154565 (2020).

    Article  CAS  Google Scholar 

  37. X. Vendrell, J.E. García, E. Cerdeiras, D.A. Ochoa, F. Rubio-Marcos, J.F. Fernández, and L. Mestres, Effect of lanthanide doping on structural, microstructural and functional properties of K0.5Na0.5NbO3 lead-free piezoceramics. Ceram. Int. 42, 17530–17538 (2016).

    Article  CAS  Google Scholar 

  38. D. Yang, Z. Yang, X. Zhang, L. Wei, and X. Chao, High transmittance in lead-free lanthanum modified potassium-sodium niobate ceramics. J. Alloys Compd. 716, 1249–1258 (2019).

    Google Scholar 

  39. X. Wu, J.F. Lin, P.F. Chen, C.W. Liu, M. Lin, C. Lin, L.H. Luo, and X.H. Zheng, Ho3+-doped (K, Na)NbO3-based multifunctional transparent ceramics with superior optical temperature sensing performance. J. Am. Ceram. Soc. 102, 1249–1258 (2019).

    Article  CAS  Google Scholar 

  40. Z.M. Geng, K. Li, X. Li, and D.L. Shi, Fabrication and photoluminescence of Eu-doped KNN-based transparent ceramics. J. Mater. Sci. 52, 2285–2295 (2016).

    Article  Google Scholar 

  41. A. Chitra, R. Khandelwal, R.L. Guupta, and K.C. Singh, Impact of crystal structure and microstructure on electrical properties of Ho doped lead-free BCST piezoceramics. Ceram. Int. 45, 10371–10379 (2019).

    Article  CAS  Google Scholar 

  42. J. Zhang, J.W. Xu, L. Yang, Z.J. Cao, C.L. Yuan, C.R. Zhou, H. Wang, and G.H. Rao, Controlling light-induced dielectric response of Sr/Ni-modifed (K0.5Na0.5)NbO3 ceramics by narrow bandgap method. Mater. Sci. Semicond. Process. 143, 106521 (2022).

    Article  CAS  Google Scholar 

  43. J.L. Li, F. Li, Z. Xu, and S.J. Zhang, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 30, 1802155 (2018).

    Article  Google Scholar 

  44. X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3, 1330001 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (61965007), Guangxi Nature Science Foundation, P. R. China (2018GXNSFDA281042) and Guangxi Key Laboratory of Information Materials, (Guilin University of Electronic Technology), P. R. China (201007-Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Liu, H., Wang, L. et al. A Multifunctional Lead-Free Ferroelectric Transparent Ceramic (K0.5Na0.5)NbO3 Modified by Sr(Bi0.5Nb0.5)O3 with High Transmittance. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11016-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11016-w

Keywords

Navigation