Skip to main content
Log in

Thermoelectric Properties of Sb2Te3 Ink Fabricated by Screen-Printing Technique

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sb2Te3-based thermoelectric (TE) ink was synthesized by mixing different Sb2Te3 microsizes with a ChaM-based solution. A thick-film TE was fabricated via a screen-printing technique on SiO2/Si-wafer substrates. The thickness of the film was controlled at 200 µm, the film was dried on hotplates at 433 K for 30 min, and the film was annealed at 523 K under vacuum for 30 min. The crystal structure, morphology, chemical composition, Seebeck coefficient, electrical resistivity, thermal conductivity, and ZT were evaluated for the annealed film samples. The small powder size of Sb2Te3 was found to be in good condition, and a maximum ZT value of 1.04 was obtained at 468 K, which is more than three times that of the large size at the same temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.B. Zhang, J.Q. Wang, and S. Wang, Roll-to-roll printing of spatial wearable thermoelectrics. Manuf. Lett. 21, 28 (2019). https://doi.org/10.1016/j.mfglet.2019.07.002.

    Article  Google Scholar 

  2. P.V. Ilaiyaraja, A.C. Sharma, T.K. Dakshinamurthy, and D.C. Sudakar, Fabrication of metal chalcogenide thin films by a facile thermolysis process under air ambient using metal-3-mercaptopropionic acid complex. Mater. Res. Bull. 141, 111346 (2021). https://doi.org/10.1016/j.materresbull.2021.111346.

    Article  CAS  Google Scholar 

  3. S. Bag, P.N. Trikalitis, P.J. Chupas, G.S. Armatas, and M.G. Kanatzidis, Porous semiconducting gels and aerogels from chalcogenide cluster. Science 31, 490 (2007). https://doi.org/10.1126/science.11425.

    Article  Google Scholar 

  4. S.H. Park, S. Jo, B. Kwon, F. Kim, H.W. Ban, J.E. Lee, D.H. Gu, S.H. Lee, Y. Hwang, J.S. Kim, D.B. Hyun, S. Lee, K.J. Choi, W. Jo, and J.S. Son, High-performance shape-engineerable thermoelectric painting. Nat. Commun. 7, 13403 (2016). https://doi.org/10.1038/ncomms13403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. H.J. Wu, P.C. Lee, F.Y. Chiu, S.W. Chen, and Y.Y. Chen, Self-assisted nucleation and growth of [010]-oriented Sb2Te3 whisker: the crystal structure and thermoelectric property. J. Mater. Chem. 3, 10488 (2013). https://doi.org/10.1039/C5TC01364J.

    Article  CAS  Google Scholar 

  6. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B.O. Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001). https://doi.org/10.1038/35098012.

    Article  CAS  PubMed  Google Scholar 

  7. K. Park, K. Ahn, J. Cha, S. Lee, S. Chae, I. Cho, I.S.P. Ryee, S. Im, J. Lee, J. Park, S.D. Han, M.J. Chung, and I.T. Hyeon, Extraordinary off-stoichiometric bismuth telluride for enhanced n-type thermoelectric power factor. J. Am. Chem. Soc. 43, 14458 (2016). https://doi.org/10.1021/jacs.6b09222.

    Article  CAS  Google Scholar 

  8. S. Thaowonkaew, M. Kumar, and A. Vora-ud, Thermoelectric properties of Ag-doped Sb2Te3 thin films on SiO2 and polyimide substrate with rapid thermal annealing. J. Electron. Mater. 50, 2669 (2021). https://doi.org/10.1007/s11664-021-08788-w.

    Article  CAS  Google Scholar 

  9. Y.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang, and J.P. Tu, Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Appl. Phys. Lett. 92, 143106 (2008). https://doi.org/10.1063/1.2900960.

    Article  CAS  Google Scholar 

  10. L. Yang, Z. Gang, M.S. Dargusch, and J. Zou, High performance thermoelectric materials: progress and their application. Adv. Energy Mater. 6, 17011797 (2017). https://doi.org/10.1002/aenm.201701797.

    Article  CAS  Google Scholar 

  11. X. Lu, P. Lu, Y. Fan, W. Zhou, S. Gu, Z. Zhou, J. Zhang, L. Su, L. Wang, and W. Jiang, Structurally nanocrystalline electrically monocrystalline Sb2Te3 with high thermoelectric performance. Scr. Mater. 166, 81 (2019). https://doi.org/10.1016/j.scriptamat.2019.03.013.

    Article  CAS  Google Scholar 

  12. M. Orrill and S. LeBlance, Printed thermoelectric materials and devices: fabrication techniques, advantages, and challenges. J. Appl. Polym. 44256, 1 (2016). https://doi.org/10.1002/app.44256.

    Article  CAS  Google Scholar 

  13. Y. Zhao, H. Liu, H. Qin, X. Chu, X. Wang, X. Wang, K. Cai, D. Liu, C. Wang, and J. Wang, Spin coating-co-reduction approach: a general strategy for preparation of oriented chalcogenide thin film on arbitrary substrates. Rare Metals 30, 651 (2011). https://doi.org/10.1007/s12598-011-0365-z.

    Article  CAS  Google Scholar 

  14. S.J. Kim, J.H. We, J.S. Kim, G.S. Kim, and B.J. Cho, Thermoelectric properties of p-type Sb2Te3 processed by a screen-printing technique and a subsequent annealing process. J. Alloys Compd. 582, 177 (2014). https://doi.org/10.1016/j.jallcom.2013.07.195.

    Article  CAS  Google Scholar 

  15. R.J. Horwood and T. Better, Understanding of screen print thickness control. Electron. Sci. Technol. 1, 129 (1974). https://doi.org/10.1155/APEC.1.129.

    Article  Google Scholar 

  16. H. Choi, S.J. Kim, Y. Kim, J.H. We, M. Oh, and B.J. Cho, Enhanced thermoelectric properties of screen-printed Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 thick films using a post annealing process with mechanical pressure. J. Mater. Chem. C. 5, 8559 (2018). https://doi.org/10.1039/C7TC01797A.

    Article  Google Scholar 

  17. F. Kim, B. Kwon, Y. Eom, J.E. Lee, S. Park, S. Jo, S.H. Park, B.S. Kim, H.J. Im, M.H. Lee, T.S. Min, K.T. Kim, H.G. Chae, W.P. King, and J.S. Son, Composition-segmented BiSbTe thermoelectric generator fabricated by multimaterial 3D printing. Nat. Energy 3, 301 (2018). https://doi.org/10.1016/j.nanoen.2020.105638.

    Article  CAS  Google Scholar 

  18. S.H. Park, S. Jo, B. Kwon, F. Kim, H.W. Ban, J.E. Lee, D.H. Gu, S.H. Lee, Y. Hwang, J.S. Kim, D.B. Hyun, S. Lee, K.J. Choi, W. Jo, and J.S. Son, High-performance shape-engineerable thermoelectric painting. Nat. Commun. 7, 13403 (2016). https://doi.org/10.1038/ncomms13403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S.J. Kim, J.H. We, and B.J. Cho, A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7, 1959 (2014). https://doi.org/10.1039/C4EE00242C.

    Article  CAS  Google Scholar 

  20. F. Kim, B. Kwon, Y. Eom, J.E. Lee, S. Park, S. Jo, S.H. Park, B.S. Kim, H.J. Im, M.H. Lee, T.S. Min, K.T. Kim, H.G. Chae, W.P. King, and J.S. Son, 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 3, 301 (2018). https://doi.org/10.1038/s41560-017-0071-2.

    Article  CAS  Google Scholar 

  21. S.K. Wang, T.C. Lin, S.R. Jian, J.Y. Juang, J.S.C. Jang, and J.Y. Tseng, Effects of post-annealing on the structural and nanomechanical properties of Ga-doped ZnO thin films deposited on glass substrate by RF-magnetron sputtering. Appl. Surf. Sci. 258, 1261 (2011). https://doi.org/10.1016/j.apsusc.2011.09.088.

    Article  CAS  Google Scholar 

  22. S.M. Shin, R. Kumar, J.W. Roh, D.S. Ko, H.S. Kim, S.I. Kim, L. Yin, S. Schlossberg, S. Cui, J.M. You, S. Kwon, J. Zheng, J. Wang, and R. Chen, High-performance screen-printed thermoelectric films on fabrics. Sci. Rep. 1, 7317 (2017). https://doi.org/10.1038/s41598-017-07654-2.

    Article  CAS  Google Scholar 

  23. A. Samavati, H. Nur, A.F. Ismail, and Z. Othaman, Radio frequency magnetron sputtered ZnO/SiO2/glass thin film: role of ZnO thickness on structural and optical properties. J. Alloys Compd. 671, 170 (2016). https://doi.org/10.1016/j.jallcom.2016.02.099.

    Article  CAS  Google Scholar 

  24. A. Vora-ud, S. Thaowonkaew, J. Khajonrit, K. Singsoog, P. Muthitamongkol, C. Chananonwathorn, N. Chanlek, M. Horpathum, S. Maensiri, and T. Seetawan, Rapid thermal annealing induced the c-axis (00l) preferred orientation and the p-type thermoelectric properties of Bi-Sb-Te thin films. Thin Solid Films 706, 138094 (2020). https://doi.org/10.1016/j.tsf.2020.138094.

    Article  CAS  Google Scholar 

  25. P.M. Radingoana, S.G. Fritsch, J. Noudem, P.A. Olubambi, G. Chevallier, and C. Estournès, Microstructure and thermoelectric properties of Al-doped ZnO ceramic prepared by spark plasma sintering. J. Eur. Ceram. Soc. 43, 1009 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.10.034.

    Article  CAS  Google Scholar 

  26. G.H. Dong, Y.J. Zhu, and L.D. Chen, Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering. J. Mater. Chem. 10, 1976 (2010). https://doi.org/10.1039/B915107A.

    Article  Google Scholar 

  27. T. Chen, P. Fan, Z. Zheng, D. Zhang, X. Cai, G. Liang, and Z. Cail, Influence of substrate temperature on structural and thermoelectric properties of antimony telluride thin films fabricated by RF and DC co-sputtering. J. Electron. Mater. 41, 679 (2012). https://doi.org/10.1007/s11664-011-1896-2.

    Article  CAS  Google Scholar 

  28. J.B. Thorat, S.V. Mohite, S.B. Madake, S.K. Shinde, D.S. Lee, J. Jung, K.Y. Rajpure, T.J. Shinde, V.J. Fulari, and N.S. Shinde, Physico-electrochemical investigation of electrodeposited nanocrystalline Sb2Te3 thin films. Int. J. Res. Anal. Rev. 1269, 2349 (2021). https://doi.org/10.1039/C5TC03656A.

    Article  CAS  Google Scholar 

  29. P. Junlabhut, P. Nuthongkum, A. Harnwunggmoung, P. Limsuwan, C. Hatayothai, R. Sakdanuphab, and A. Sakulkalavek, Thickness dependence of thermoelectric properties and maximum output power of single planar Sb2Te3 films. Materials 15, 8850 (2022). https://doi.org/10.3390/ma15248850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. H. Jalili, B. Aslibeiki, A.G. Varzaneh, and V.A. Chernenko, The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles. Beilstein J. Nanotechnol. 10, 1348 (2019). https://doi.org/10.3762/bjnano.10.133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D. Vollath, Criteria ruling particle agglomeration. Beilstein J. Nanotechnol. 12, 1093 (2021). https://doi.org/10.3762/bjnano.12.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. R.M. German, Rheological model for viscous flow densification during supersolidus liquid phase sintering. Sci. Sinter. 38, 27 (2006). https://doi.org/10.2298/SOS0601027G.

    Article  CAS  Google Scholar 

  33. P. Bathnagar, and D. Vashaee, Development of MEMS process compatible (Bi, Sb)2(Se, Te)3-based thin films for scalable fabrication of planar micro-thermoelectric generators. Micromachines 13, 1459 (2022). https://doi.org/10.3390/mi13091459.

    Article  Google Scholar 

  34. M.H. Lee, K.R. Kim, J.S. Rhyee, S.D. Park, and G.J. Snyder, High thermoelectric figure-of-merit in Sb2Te3/Ag2Te bulk composites as Pb-free p-type thermoelectric materials. J. Mater. Chem. C 3, 10494 (2015). https://doi.org/10.1039/C5TC01623A.

    Article  CAS  Google Scholar 

  35. E. Vieira, J. Figureira, A.L. Pires, J. Grilo, M.F. Silva, A.M. Pereira, and L.M. Goncalves, Bi2Te3 and Sb2Te3 thin films with enhanced thermoelectric properties for flexible thermal sensors. Proceedings 2, 815 (2018). https://doi.org/10.3390/proceedings2130815.

    Article  Google Scholar 

  36. G.J. Snyder, A.H. Snyder, M. Wood, R. Guranathan, B.H. Snydera, and C. Niu, Weighted mobility. Adv. Mater. 32, 2001537 (2020). https://doi.org/10.1002/adma.202001537.

    Article  CAS  Google Scholar 

  37. S. Kumar, M. Faraz, and N. Khare, Enhanced thermoelectric properties of Sb2Te3-graphene nanocomposite. Mater. Res. Express 6, 085079 (2019). https://doi.org/10.1088/2053-1591/ab1d1f.

    Article  CAS  Google Scholar 

  38. T.H. An, Y.S. Lim, M.J. Park, J.Y. Tak, S. Lee, H.K. Cho, J.Y. Cho, C. Park, and W.S. Seo, Composition-dependent charge transport and temperature-dependent density of state effective mass interpreted by temperature-normalized pisarenko plot in Bi2xSbxTe3 compounds. Appl Mater. 4, 104812 (2016). https://doi.org/10.1063/1.4961106.

    Article  CAS  Google Scholar 

  39. P. Dharmaiah, H.S. Kim, C.H. Lee, and S.J. Hong, Influence of powder size on thermoelectric properties of p-type25%Bi2Te3-75%Sb2Te3 alloys fabricated using gas-atomization and spark-plasma sintering. J. Alloys Compd. 686, 1 (2016). https://doi.org/10.1016/j.jallcom.2016.05.340.

    Article  CAS  Google Scholar 

  40. S.M. Yoon, B. Madavali, C.H. Lee, O.E. Femi, J.H. Lee, S.H. Song, and S.J. Hong, Fabrication of large-scale p-type 75% Sb2Te3-25% Bi2Te3 thermoelectric materials by gas atomization and hot isostatic pressing. Mater. Res. Bull. 130, 110924 (2020). https://doi.org/10.1016/j.materresbull.2020.110924.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Technology Development Agency (NSTDA) and Thailand Graduate Institute of Science and Technology (TGIST) Grant, SCA-CO-2563-12020-TH and Program Management Unit for Human Resources & Institutional Development Research and Innovation (PMU-B) e-ASIA JRP program (B16F650001). I would like to express Prof. Ady Suwardi of The National University of Singapore (NUS) for supporting the thermal conductivity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tosawat Seetawan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruamruk, S., Chayasombat, B., Singsoog, K. et al. Thermoelectric Properties of Sb2Te3 Ink Fabricated by Screen-Printing Technique. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-10996-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-10996-z

Keywords

Navigation