Skip to main content
Log in

Comparative Analysis of Highly Sensitive Ammonia Gas Sensors Based on ZnO, CdO, and CdZnO Thin Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CdO, ZnO, and CdZnO thin films were deposited using the nebulizer spray pyrolysis method, and their properties were investigated for gas sensing applications. The deposition process involved the use of analytical reagent-grade chemicals and a nebulizer spray pyrolysis setup. X-ray diffraction analysis revealed the cubic and hexagonal crystal structures of the films, with distinct peak positions corresponding to CdO and ZnO. The addition of CdO influenced the growth kinetics and crystallization behavior of the films, leading to an increase in the average crystallite size of CdZnO films compared to pure ZnO films. Optical analysis showed that CdO, CdZnO, and ZnO films had direct band gaps of 2.3 eV, 3.03 eV, and 3.18 eV, respectively. The gas sensing properties of CdO films were investigated, and the sensing mechanism was elucidated in terms of electron release and capture by chemisorbed oxygen species. Impedance spectroscopy measurements demonstrated the sensitivity of the CdO sensor to different concentrations of ammonia gas. The fabricated CdO sensor exhibited enhanced sensitivity at room temperature compared to higher temperatures. Overall, the CdO, ZnO, and CdZnO thin films show promise for gas sensing applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, Dr. R. Mariappan, upon reasonable request.

References

  1. B. Amudhavalli, R. Mariappan, and M. Prasath, Synthesis chemical methods for deposition of ZnO, CdO and CdZnO thin films to facilitate further research. J. Alloys Compd. 925, 166511 (2022).

    Article  CAS  Google Scholar 

  2. S.D. Eadi, H. Yan, P.S. Kumar, Y. Rathinam, and H.D. Lee, IGZO-decorated ZnO thin films and their application for gas sensing. Environ. Res. 214, 113796 (2022).

    Article  CAS  Google Scholar 

  3. S.X. Fan and W. Tang, Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature. Sens. Actuators, B Chem. 362, 131789 (2022).

    Article  CAS  Google Scholar 

  4. K. Gayathri, K. Ravichandran, M. Sridharan, S. Suvathi, R. Sriram, R. Mohan, and P. Sakthivel, Enhanced ammonia gas sensing by cost-effective SnO2 gas sensor: influence of effective Mo doping. Mater. Sci. Eng. B 298, 116849 (2023).

    Article  CAS  Google Scholar 

  5. S. Gupta, A. Knoepfel, H. Zou, Y. Ding, Investigations of methane gas sensor based on biasing operation of n-ZnO nanorods/p-Si assembled diode and Pd functionalized Schottky junctions. Sens. Actuators B: Chem., p. 134030 (2023).

  6. K.X. Han, C.C. Wu, W.F. Hsu, W. Chien, and C.F. Yang, Preparation of ultrafast ammonia sensor based on cross-linked ZnO nanorods coated with poly (3-hexylthiophene). Synth. Met. 299, 117449 (2023).

    Article  CAS  Google Scholar 

  7. K. Kasirajan, L.B. Chandrasekar, S. Maheswari, M. Karunakaran, and P.S. Sundaram, A comparative study of different rare-earth (Gd, Nd, and Sm) metals doped ZnO thin films and its room temperature ammonia gas sensor activity: Synthesis, characterization, and investigation on the impact of dopant. Opt. Mater. 121, 111554 (2021).

    Article  CAS  Google Scholar 

  8. S. Kumar and T.T. John, Quick surface adsorption and sensing of ammonia at room temperature by In2S3 thin films. Appl. Surf. Sci. 620, 156816 (2023).

    Article  CAS  Google Scholar 

  9. S.D. Lokhande, M.B. Awale, G. Umadevi, and V.D. Mote, Effect of Ni doping on structural, optical and gas sensing properties of ZnO films for the development of acetone sensor devices. Mater. Chem. Phys. 301, 127667 (2023).

    Article  CAS  Google Scholar 

  10. D. Mani, S.S. Manoharan, G.J. Arputhavalli, G. Sriram, and S. Jebasingh, A study on morphology dependent nanostructured ZnO thin films: an efficient gas sensing response for acetaldehyde. Inorg. Chem. Commun. 150, 110471 (2023).

    Article  CAS  Google Scholar 

  11. T. Ravikumar, L. Thirumalaisamy, S. Madanagurusamy, and K. Sivaperuman, Substrate temperature dependent ammonia gas sensing performance of zinc ferrite thin films prepared by spray pyrolysis technique. J. Alloys Compd. 959, 170568 (2023).

    Article  CAS  Google Scholar 

  12. A. Raza, R. Abid, I. Murtaza, and T. Fan, Room temperature NH3 gas sensor based on PMMA/RGO/ZnO nanocomposite films fabricated by in-situ solution polymerization. Ceram. Int. 49, 27050–27059 (2023).

    Article  CAS  Google Scholar 

  13. P. Shankar, P. Srinivasan, B. Vutukuri, A.J. Kulandaisamy, G.K. Mani, K.J. Babu, and J.B.B. Rayappan, Boron induced c-axis growth and ammonia sensing signatures of spray pyrolysis deposited ZnO thin films–Relation between crystallinity and sensing. Thin Solid Films 746, 139126 (2022).

    Article  CAS  Google Scholar 

  14. A.D. Sheikh, V.K. Vhanalakar, A.S. Katware, K.K. Pawar, and S.K. Kulkarni, Ultrasensitive organic-inorganic nanotube thin films of halogenated perovskites as room temperature ammonia sensors. J. Alloys Compd. 894, 162388 (2022).

    Article  CAS  Google Scholar 

  15. S.R. Shinde and V.P. Shinde, Liquefied petroleum gas sensing performance of solochemically synthesized ZnO nanorods: role of precursors and fractal analysis. Sens. Actuators, A 345, 113800 (2022).

    Article  CAS  Google Scholar 

  16. B. Soltabayev, A. Mentbayeva, and S. Acar, Enhanced gas sensing properties of in doped ZnO thin films. Mater. Today Proc. 49, 2495–2500 (2022).

    Article  CAS  Google Scholar 

  17. S.R. Sriram, S.R. Parne, N. Pothukanuri, and D.R. Edla, Prospects of spray pyrolysis technique for gas sensor applications–A comprehensive review. J. Anal. Appl. Pyrol. 164, 105527 (2022).

    Article  CAS  Google Scholar 

  18. D.T.H. To, J.Y. Park, B. Yang, N.V. Myung, and Y.H. Choa, Nanocrystalline ZnO quantum dot-based chemiresistive gas sensors: improving sensing performance towards NO2 and H2S by optimizing operating temperature. Sens. Actuators Rep. 6, 100166 (2023).

    Article  Google Scholar 

  19. A. Umar, A.A. Ibrahim, R. Kumar, H. Algadi, H. Albargi, M.A. Alsairi, and S. Akbar, CdO–ZnO nanorices for enhanced and selective formaldehyde gas sensing applications. Environ. Res. 200, 111377 (2021).

    Article  CAS  Google Scholar 

  20. Y. Wang, C. Wang, Y. Xu, and Y. Sun, Novel ZnO/CdO heterostructure for high efficiency formaldehyde sensing with high response and low detection limit at low temperature. Mater. Res. Bull. 168, 112451 (2023).

    Article  CAS  Google Scholar 

  21. H. Zhu, Z. Yuan, Y. Shen, C. Han, H. Ji, Z. Mu, and F. Meng, Conductometric acetic anhydride gas sensors based on S-doped porous ZnO microspheres with enhanced Lewis base interaction. Sens. Actuators B Chem. 373, 132726 (2022).

    Article  CAS  Google Scholar 

  22. S. Brahma, P.C. Huang, B.W. Mwakikunga, V. Saasa, A.A. Akande, J.L. Huang, and C.P. Liu, Cd doped ZnO nanorods for efficient room temperature NH3 sensing. Mater. Chem. Phys. 294, 127053 (2023).

    Article  CAS  Google Scholar 

  23. B. Amudhavalli, M. Prasath, and R. Mariappan, Recent development of low cost nebulizer sprayed Cd1-xZnxO nanoparticles. Solid State Commun. 341, 114544 (2022).

    Article  CAS  Google Scholar 

  24. A.K. Sharma, S.S. Potdar, K.S. Pakhare, U.M. Patil, V.S. Patil, and M.C. Naik, Nanostructured CdO–ZnO composite thin films for sensing application. J. Mater. Sci.: Mater. Electron. 31, 20932–20944 (2020).

    CAS  Google Scholar 

  25. M.R. Das and P. Mitra, SILAR-synthesized CdO thin films for improved supercapacitive, photocatalytic and LPG-sensing performance. Chem. Pap. 73, 1605–1619 (2019).

    Article  CAS  Google Scholar 

  26. R. Mariappan, V. Ponnuswamy, and P. Suresh, Effect of doping concentration on the structural and optical properties of pure and tin doped zinc oxide thin films by nebulizer spray pyrolysis (NSP) technique. Superlattices Microstruct. 52(3), 500–513 (2012).

    Article  CAS  Google Scholar 

  27. R. Mariappan, V. Ponnuswamy, S.M. Mohan, P. Suresh, and R. Suresh, The effect of potential on electrodeposited CdSe thin films. Mater. Sci. Semicond. Process. 15(2), 174–180 (2012).

    Article  CAS  Google Scholar 

  28. A.K. Sharma, S.S. Potdar, K.S. Pakhare, B.M. Sargar, M.V. Rokade, and N.L. Tarwal, The selective ethanol gas sensing performance of CdO1−XZnOX nanocomposite. J. Mater. Sci.: Mater. Electron. 28, 3752–3761 (2017).

    CAS  Google Scholar 

  29. B. Altun, E.I. Karaduman, A.O. Cagrtekin, A. Ajjaq, F. Sarf, and S. Acar, Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method. Appl. Phys. A 127(9), 687 (2021).

    Article  CAS  Google Scholar 

  30. M. Sathya, G. Selvan, K. Kasirajan, S. Usha, P. Baskaran, and M. Karunakaran, Effect of zirconium doping on ZnO nanostructured thin films and the enhanced ammonia gas sensing activity. J. Mater. Sci.: Mater. Electron. 33(1), 443–457 (2022).

    CAS  Google Scholar 

  31. K.R. Devi, G. Selvan, M. Karunakaran, I.L.P. Raj, A.A. El-Rehim, H.Y. Zahran, and S. AlFaify, Enhanced room temperature ammonia gas sensing properties of Al-doped ZnO nanostructured thin films. Opt. Quant. Electron. 52, 1–19 (2020).

    Article  Google Scholar 

  32. S.D. Lokhande, M.B. Awale, and V.D. Mote, Optical and gas sensing properties of Cu-doped ZnO nanocrystalline thin films for sensor applications. J. Mater. Sci.: Mater. Electron. 33(33), 25063–25077 (2022).

    CAS  Google Scholar 

  33. S. Goudarzi and K. Khojier, Role of substrate temperature on the ammonia gas sensing performance of Mg-doped ZnO thin films deposited by spray pyrolysis technique: application in breath analysis devices. Appl. Phys. A 124(9), 601 (2018).

    Article  Google Scholar 

  34. Y. Bai, X. Dong, C. Guo, Y. Xu, B. Wang, and X. Cheng, Spray synthesis of rapid recovery ZnO/polyaniline film ammonia sensor at room temperature. Front. Mater. Sci. 16(4), 220620 (2022).

    Article  Google Scholar 

  35. S. Fairose, S. Ernest, and S. Daniel, Effect of oxygen sputter pressure on the structural, morphological and optical properties of ZnO thin films for gas sensing application. Sens. Imaging 19, 1–18 (2018).

    Article  CAS  Google Scholar 

  36. A.P.S. Gahlot, A. Paliwal, and A. Kapoor, Theoretical and experimental investigation on SPR gas sensor based on ZnO/polypyrrole interface for ammonia sensing applications. Plasmonics 17(4), 1619–1632 (2022).

    Article  CAS  Google Scholar 

  37. G. Manjunath, P. Nagaraju, and S. Mandal, A comparative study on enhancer and inhibitor of glycine–nitrate combustion ZnO screen-printed sensor: detection of low concentration ammonia at room temperature. J. Mater. Sci.: Mater. Electron. 31, 10366–10380 (2020).

    CAS  Google Scholar 

  38. F. Sarf, E.I. Karaduman, E. Yakar, and S. Acar, The role of rare-earth metal (Y, Ru and Cs)-doped ZnO thin films in NH 3 gas sensing performances at room temperature. J. Mater. Sci. Mater. Electron. 31, 10084–10095 (2020).

    Article  CAS  Google Scholar 

  39. E. Vinoth, S. Gowrishankar, and N. Gopalakrishnan, Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films. Appl. Phys. A 124, 1–8 (2018).

    Article  CAS  Google Scholar 

  40. V. Adimule, M.G. Revaigh, and H.J. Adarsha, Synthesis and fabrication of Y-doped ZnO nanoparticles and their application as a gas sensor for the detection of ammonia. J. Mater. Eng. Perform. 29, 4586–4596 (2020).

    Article  CAS  Google Scholar 

  41. M. Rajendra Prasad, M. Haris, and M. Sridharan, Structural, optical and ammonia sensing properties of nanostructured ZnO thin films deposited by spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 28, 11367–11373 (2017).

    Article  CAS  Google Scholar 

  42. M. Rajendra Prasad, M. Haris, and M. Sridharan, Investigation on structural, morphological, optical and ammonia sensing properties indium doped nano crystalline ZnO thin films synthesized by spray pyrolysis technique. Sens. Imaging 19, 1–14 (2018).

    Article  Google Scholar 

  43. R. Mariappan, V. Ponnuswamy, P. Suresh, N. Ashok, P. Jayamurugan, and A.C. Bose, Influence of film thickness on the properties of sprayed ZnO thin films for gas sensor applications. Superlattices Microstruct. 71, 238–249 (2014).

    Article  CAS  Google Scholar 

  44. F. Ozutok, I. Karaduman, S. Demiri, and Acar, Influence of different aluminum sources on the NH 3 gas-sensing properties of ZnO thin films. J. Electron. Mater. 47, 2648–2657 (2018).

    Article  CAS  Google Scholar 

  45. R. Mariappan, S. Dinagaran, P. Srinivasan, and S. Vijayakumar, Electrical impedance analysis of ZnO thin films for ammonia gas sensors. Indian J. Chem. Technol. 30(4), 483–491 (2023).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the University Grants Commission-South Eastern Regional Office (UGC-SERO), Hyderabad (India), for providing financial support through project No. MRP-4892/14 (SERO/UGC). They would also like to acknowledge the support of Adhiyamaan College of Engineering (Autonomous), Hosur, Krishnagiri.

Funding

This research was funded by a grant from the University Grants Commission-South Eastern Regional Office (UGC-SERO), Hyderabad (India), for financial support under the project (No. MRP-4892/14 (SERO/UGC)) PI: Dr. R. Mariappan.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by BA; conceptualization, methodology, investigation, data curation, writing—review & editing by RM. The first draft of the manuscript was written by MP.

Corresponding authors

Correspondence to R. Mariappan or M. Prasath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The final version of the manuscript was reviewed and approved by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amudhavalli, B., Mariappan, R. & Prasath, M. Comparative Analysis of Highly Sensitive Ammonia Gas Sensors Based on ZnO, CdO, and CdZnO Thin Films. J. Electron. Mater. 53, 535–546 (2024). https://doi.org/10.1007/s11664-023-10800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10800-4

Keywords

Navigation