Skip to main content
Log in

Design and Performance Optimization of Eco-friendly Cs2AgBiBr6 Double Perovskite Solar Cell

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

As lead halide perovskites face toxicity and stability issues, research on the eco-friendly double perovskite Cs2AgBiBr6 has become increasingly popular. While the majority of research on this Cs2AgBiBr6 perovskite material has been concentrated on photovoltaic performance and promising applications, its enduring stability and degradation process have received far less attention. This article presents a thorough numerical analysis of an eco-friendly Cs2AgBiBr6 double perovskite solar cell (PSC) model with a standard n-i-p architecture FTO/C60/Cs2AgBiBr6/MoS2/Pt. In-depth research has been done on several device characteristics, including the defect density and the thickness of the electron transport layer (ETL), hole transport layer (HTL), and absorber layer, and back-contact electrode work function. Through parameter optimization, we were able to achieve an open-circuit voltage (Voc) of 0.84 V, short-circuit current density (Jsc) of 32.28 mA/cm2, and fill factor (FF) of 85.77% with power conversion efficiency (PCE) of 23.49% under AM1.5G illumination, which is significantly greater than the highest stated values identified in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the present study.

References

  1. J.K. Deepthi, Modeling and performance estimation of all inorganic double perovskite solar cells, in 2022 IEEE international conference on signal processing, informatics, communication and energy systems (SPICES) (Vol. 1, pp. 28-32). IEEE. (2022)

  2. Z. Zhang, C. Wu, D. Wang, G. Liu, Q. Zhang, W. Luo, and Z. Chen, Improvement of Cs2AgBiBr6 double perovskite solar cell by rubidium doping. Organ. Electron. 74, 204 (2019).

    Article  CAS  Google Scholar 

  3. I. Chabri, Y. Benhouria, A. Oubelkacem, A. Kaiba, I. Essaoudi, and A. Ainane, Numerical analysis of lead-free Cs2SnI6-based perovskite solar cell, with inorganic charge transport layers using SCAPS-1D. J. Electron. Mater. 52(4), 2722 (2023).

    Article  CAS  Google Scholar 

  4. M. Wang, P. Zeng, S. Bai, J. Gu, F. Li, Z. Yang, and M. Liu, High-quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells. Solar RRL 2(12), 1800217 (2018).

    Article  Google Scholar 

  5. G. Volonakis, A.A. Haghighirad, R.L. Milot, W.H. Sio, M.R. Filip, B. Wenger, and F. Giustino, Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8(4), 772 (2017).

    Article  CAS  Google Scholar 

  6. Z. Yang, J. Dou, S. Kou, J. Dang, Y. Ji, G. Yang, and M. Wang, Multifunctional phosphorus-containing lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells. Adv. Funct. Mater. 30(15), 1910710 (2020).

    Article  CAS  Google Scholar 

  7. G. Longo, S. Mahesh, L.R. Buizza, A.D. Wright, A.J. Ramadan, M. Abdi-Jalebi, and H.J. Snaith, Understanding the performance-limiting factors of Cs2AgBiBr6 double-perovskite solar cells. ACS Energy Lett. 5(7), 2200 (2020).

    Article  CAS  Google Scholar 

  8. T. Burwig, M. Guc, V. Izquierdo-Roca, and P. Pistor, Synthesis and crystal structure evolution of co-evaporated Cs2AgBiBr6 thin films upon thermal treatment. J. Phys. Chem. C 124(17), 9249 (2020).

    Article  CAS  Google Scholar 

  9. J. Liang, C. Wang, P. Zhao, Z. Lu, Y. Ma, Z. Xu, and Z. Jin, Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices. Nanoscale 9(33), 11841 (2017).

    Article  CAS  Google Scholar 

  10. Z. Zhang, Q. Sun, Y. Lu, F. Lu, X. Mu, S.H. Wei, and M. Sui, Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nat. Commun. 13(1), 1 (2022).

    Google Scholar 

  11. K.M. Lee, W.J. Lin, S.H. Chen, and M.C. Wu, Control of TiO2 electron transport layer properties to enhance perovskite photovoltaics performance and stability. Org. Electron. 77, 105406 (2020).

    Article  CAS  Google Scholar 

  12. M.C. Wu, S.H. Chan, K.M. Lee, S.H. Chen, M.H. Jao, Y.F. Chen, and W.F. Su, Enhancing the efficiency of perovskite solar cells using mesoscopic zinc-doped TiO2 as the electron extraction layer through band alignment. J. Mater. Chem. A 6(35), 16920 (2018).

    Article  CAS  Google Scholar 

  13. M.F.M. Noh, C.H. Teh, R. Daik, E.L. Lim, C.C. Yap, M.A. Ibrahim, and M.A.M. Teridi, The architecture of the electron transport layer for a perovskite solar cell. J. Mater. Chem. C 6(4), 682 (2018).

    Article  Google Scholar 

  14. M.C. Wu and Y.H. Chang, Perovskite-structured photovoltaic materials, in Solar panels and photovoltaic materials (IntechOpen: London, 2018).

    Google Scholar 

  15. F. Zhang, B. Yang, Y. Li, W. Deng, and R. He, Extra long electron–hole diffusion lengths in CH3NH3PbI3xClx perovskite single crystals. J. Mater. Chem. C 5(33), 8431 (2017).

    Article  CAS  Google Scholar 

  16. X. Yang, Y. Chen, P. Liu, H. Xiang, W. Wang, R. Ran, and Z. Shao, Simultaneous power conversion efficiency and stability enhancement of Cs2AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer. Adv. Funct. Mater. 30(23), 2001557 (2020).

    Article  CAS  Google Scholar 

  17. D. Kumari and S.K. Pandey, Comprehensive study and performance analysis of an eco-friendly double perovskite Cs2AgBiBr6 on Si tandem solar cell. JOSA B 39(3), 756 (2022).

    Article  CAS  Google Scholar 

  18. W. Luo, Xu. Jianxiang, and S. Liu, Optimization of all-inorganic CsPbI3-based inverted perovskite solar cells by numerical simulation. J. Electron. Mater. 52(3), 2216 (2023).

    Article  CAS  Google Scholar 

  19. C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo, Z. Huang, and L. Xiao, The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. 5(3), 1700759 (2018).

    Article  Google Scholar 

  20. S.K. Pandey and S. Somay, Numerical analysis of rGO/silver-nanowire-based single-crystal perovskite solar cell. IEEE Trans. Electron Devices 67(10), 4321 (2020).

    Article  CAS  Google Scholar 

  21. D. Hong, Y. Peiyang Zhao, C. Zhao, Y. Xia, Z. Wei, Z. Jin, and Y. Tian, Inhibition of phase segregation in cesium lead mixed-halide perovskites by B-site doping. iScience 23(8), 101415 (2020).

    Article  CAS  Google Scholar 

  22. G.W. Kim, D.V. Shinde, and T. Park, The thickness of the hole transport layer in perovskite solar cells: performance versus reproducibility. RSC Adv. 5(120), 99356 (2015).

    Article  CAS  Google Scholar 

  23. J. Liang, P. Zhao, C. Wang, Y. Wang, Hu. Yi, G. Zhu, L. Ma, J. Liu, and Z. Jin, CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J. Am. Chem. Soc. 139(40), 14009 (2017).

    Article  CAS  Google Scholar 

  24. S. Bhatt, R. Shukla, C. Pathak, and S.K. Pandey, Evaluation of performance constraints and structural optimization of a core–shell ZnO nanorod based eco-friendly perovskite solar cell. Sol. Energy 215, 473 (2021).

    Article  CAS  Google Scholar 

  25. F. Igbari, R. Wang, Z.K. Wang, X.J. Ma, Q. Wang, K.L. Wang, and Y. Yang, Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells. Nano Lett. 19(3), 2066 (2019).

    Article  CAS  Google Scholar 

  26. I. Alam, R. Mollick, and M.A. Ashraf, Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers. Physcia B 618, 413187 (2021).

    Article  CAS  Google Scholar 

  27. A.S. Chouhan, N.P. Jasti, and S. Avasthi, Effect of interface defect density on performance of perovskite solar cell: correlation of simulation and experiment. Mater. Lett. 221, 150 (2018).

    Article  CAS  Google Scholar 

  28. M.T. Sirtl, R. Hooijer, M. Armer, F.G. Ebadi, M. Mohammadi, C. Maheu, and T. Bein, 2D/3D hybrid Cs2AgBiBr6 double perovskite solar cells: improved energy level alignment for higher contact-selectivity and large open circuit voltage. Adv. Energy Mater. 12(7), 2103215 (2022).

    Article  CAS  Google Scholar 

  29. M. Ghasemi, L. Zhang, J.H. Yun, M. Hao, D. He, P. Chen, and L. Wang, Dual-ion-diffusion induced degradation in lead-free Cs2AgBiBr6 double perovskite solar cells. Adv. Funct. Mater. 30(42), 2002342 (2020).

    Article  CAS  Google Scholar 

  30. C. Pathak and S.K. Pandey, Design, performance, and defect density analysis of efficient eco-friendly perovskite solar cell. IEEE Trans. Electron Devices 67(7), 2837 (2020).

    Article  Google Scholar 

  31. R.R. Kumar and S.K. Pandey, Performance improvement and defects analysis in pervoskite based solar cell, in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) (pp. 1191-1194). IEEE (2019).

  32. I. Alam, R. Mollick, and M.A. Ashraf, Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO-NR as electron transport layer and CuI as hole transport layer. Phys. B Conden. Matter. 618, 413187 (2020).

    Article  Google Scholar 

  33. R.R. Kumar and S.K. Pandey, Performance evaluation and material parameter perspective of eco-friendly highly efficient CsSnGeI3 perovskite solar cell. Superlattices Microstruct. 135, 106273 (2019).

    Article  Google Scholar 

  34. A. Mohandes, M. Moradi, and H. Nadgaran, Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D. Opt. Quant. Electron. 53(6), 1 (2021).

    Article  Google Scholar 

  35. S. Bhatt, R. Shukla, C. Pathak, and S.K. Pandey, Evaluation of performance constraints and structural optimization of a core–shell ZnO nanorod-based eco-friendly perovskite solar cell. Sol. Energy 215, 473 (2021).

    Article  CAS  Google Scholar 

  36. M.T. Islam, M.R. Jani, S.M. Al Amin, M.S.U. Sami, K.M. Shorowordi, M.I. Hossain, and S. Ahmed, Numerical simulation studies of a fully inorganic Cs2AgBiBr6 perovskite solar device. Opt. Mater. 105, 109957 (2020).

    Article  CAS  Google Scholar 

  37. P. Chetan and S.K. Pandey, Design, performance, and defect density analysis of efficient eco-friendly perovskite solar cell. IEEE Trans. Electron Devices 67(7), 2837 (2020).

    Article  Google Scholar 

  38. J. Handong, E. Debroye, M. Keshavarz, I.G. Scheblykin, M.B.J. Roeffaers, J. Hofkens, and J.A. Steele, It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz. 7(2), 397 (2020).

    Article  Google Scholar 

  39. P. Saurabh Kumar and S. Somay, Device engineering approach toward stable, efficient, and eco-friendly perovskite solar cell. IEEE Trans. Electron Devices 68(3), 1142 (2021).

    Article  Google Scholar 

  40. R. Shukla, D. Punetha, R.R. Kumar, and S.K. Pandey, Examining the performance parameters of stable environment friendly perovskite solar cell. Opt. Mater. 143, 114124 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Marc Burgelman from the University of Ghent, Belgium, for authorizing them to use the SCAPS-1D tool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Kumar Pandey.

Ethics declarations

Conflict of interest

I, on behalf of all authors hereby declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, N., Kumari, D., Shukla, R. et al. Design and Performance Optimization of Eco-friendly Cs2AgBiBr6 Double Perovskite Solar Cell. J. Electron. Mater. 52, 7842–7849 (2023). https://doi.org/10.1007/s11664-023-10705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10705-2

Keywords

Navigation