Skip to main content
Log in

High-performance optimization and analysis of Cs2AgBiBr6-based lead-free double perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work focuses on designing novel perovskite solar cells (PSCs) by working on the stability issues, the presence of lead in the PSC's structure, and its innately low efficiency. This work aims to overcome lead-based PSCs' shortcomings by optimizing various parameters of the double perovskite absorber layer and hole transport layer (HTL). The double perovskite \({\mathrm{Cs}}_{2}{\mathrm{AgBiBr}}_{6}\) material has been utilized as an absorber. The device performances are investigated with \(\mathrm{Spiro\,OMeTAD\, (S.O.)}\), \({\mathrm{Cu}}_{2}\mathrm{O}\), \({\mathrm{MASnBr}}_{3}\), \({\mathrm{P}}_{3}\mathrm{HT}\), \({\mathrm{Ni}}_{1-x}\mathrm{O}\), and Cu-doped \({\mathrm{Ni}}_{1-x}\mathrm{O}\) as HTLs and Mg-doped \(\mathrm{ZnO}\) \({(\mathrm{Zn}}_{x}{\mathrm{Mg}}_{1-x}\mathrm{O})\) as electron transport layer (ETL). Cu-doped \({\mathrm{Ni}}_{1-x}\mathrm{O}\) significantly boosts the performance of lead-free double perovskite-based solar cells. The device shows maximum power conversion efficiency (PCE) of 20.06%, Open-circuit voltage (\(V_{\mathrm{oc}})\) of 1.68 V, Short-circuit current density (\(J_{\mathrm{sc}}\)) of 14.81 \({\mathrm{mA}/\mathrm{cm}}^{2},\) and Fill-factor (FF) of 80.54%. Also, the effect of changing series resistance, shunt resistance, and temperature on the optimized device has been investigated. The optimized device shows more immunity and stability against temperature variations. These results can be utilized for designing high-performance, eco-friendly perovskite solar cells in the future. This study suggests that \({\mathrm{Cs}}_{2}{\mathrm{AgBiBr}}_{6}\) and some other double perovskites can be utilized as an important absorber toward the stable and efficient lead-free and inorganic PSCs for future eco-friendly technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. N. Lakhdar, A. Hima, Opt. Mater. (Amst). 99, 109517 (2020). https://doi.org/10.1016/j.optmat.2019.109517

    Article  CAS  Google Scholar 

  2. C.J. Yu, J. Phys. Energy 1, 022001 (2019). https://doi.org/10.1088/2515-7655/aaf143

    Article  CAS  Google Scholar 

  3. A. Raj, M. Kumar, H. Bherwani, A. Gupta, A. Anshul, J. Vac. Sci. Technol. B 39, 012401 (2021). https://doi.org/10.1116/6.0000718

    Article  CAS  Google Scholar 

  4. I. Mesquita, L. Andrade, A. Mendes, Renew. Sustain. Energy Rev. 82, 2471 (2018). https://doi.org/10.1016/j.rser.2017.09.011

    Article  CAS  Google Scholar 

  5. Y. Chen, L. Zhang, Y. Zhang, H. Gao, H. Yan, RSC Adv. 8, 10489 (2018). https://doi.org/10.1039/c8ra00384j

    Article  CAS  Google Scholar 

  6. N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 3061–3068 (2014). https://doi.org/10.1039/c4ee01076k

    Article  CAS  Google Scholar 

  7. C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo, Z. Huang, H. Ting, W. Sun, X. Zhong, S. Wei, S. Wang, Z. Chen, L. Xiao, Adv. Sci. 5, 759 (2018). https://doi.org/10.1002/advs.201700759

    Article  CAS  Google Scholar 

  8. Q. Mahmood, M. Hassan, N. Yousaf, A.A. AlObaid, T.I. Al-Muhimeed, M. Morsi, H. Albalawi, O.A. Alamri, Mater. Sci. Semicond. Process. 137, 106180 (2022). https://doi.org/10.1016/j.mssp.2021.106180

    Article  CAS  Google Scholar 

  9. T.I. Alanazi, Crystals 13, 267 (2023). https://doi.org/10.3390/cryst13020267

    Article  CAS  Google Scholar 

  10. A. Mohandes, M. Moradi, H. Nadgaran, Opt. Quantum Electron. 53, 1 (2021). https://doi.org/10.1007/s11082-021-02959-z

    Article  CAS  Google Scholar 

  11. S. Madani, T. Tesfamichael, H. Wang, N. Motta, Ceram. Int. 48, 15207 (2022). https://doi.org/10.1016/j.ceramint.2022.02.051

    Article  CAS  Google Scholar 

  12. G. Pindolia, S.M. Shinde, P.K. Jha, Sol. Energy 236, 802 (2022). https://doi.org/10.1016/j.solener.2022.03.053

    Article  CAS  Google Scholar 

  13. N. Gamal, S.H. Sedky, A. Shaker, M. Fedawy, Optik (Stuttg). 242, 167306 (2021). https://doi.org/10.1016/j.ijleo.2021.167306

    Article  CAS  Google Scholar 

  14. S. Ahmed, F. Jannat, M.A.K. Khan, M.A. Alim, Optik (Stuttg). 225, 165765 (2021). https://doi.org/10.1016/j.ijleo.2020.165765

    Article  CAS  Google Scholar 

  15. L.J. Chen, RSC Adv. 8, 18396 (2018). https://doi.org/10.1039/c8ra01150h

    Article  CAS  Google Scholar 

  16. P.K. Patel, Sci. Rep. 11, 1 (2021). https://doi.org/10.1038/s41598-021-82817-w

    Article  CAS  Google Scholar 

  17. S.C. Yadav, V. Manjunath, A. Srivastava, R.S. Devan, P.M. Shirage, Opt. Mater. (Amst). 132, 112676 (2022). https://doi.org/10.1016/j.optmat.2022.112676

    Article  CAS  Google Scholar 

  18. A. Tara, V. Bharti, S. Sharma, R. Gupta, Opt. Mater. (Amst). 119, 111362 (2021). https://doi.org/10.1016/j.optmat.2021.111362

    Article  CAS  Google Scholar 

  19. S. Bansal and P. Aryal, 2017 IEEE 44th Photovoltaic Specialist Conference PVSC vol. 8, p. 3220 (2017). https://doi.org/10.1109/PVSC.2017.8366107

  20. D. Zhao, C. Liang, B. Wang, T. Liu, Q. Wei, K. Wang, H. Gu, S. Wang, S. Mei, G. Xing, Energy Environ. Mater. 5, 1317 (2022). https://doi.org/10.1002/eem2.12249

    Article  CAS  Google Scholar 

  21. M.T. Sirtl, R. Hooijer, M. Armer, F.G. Ebadi, M. Mohammadi, C. Maheu, A. Weis, B.T. van Gorkom, S. Häringer, R.A.J. Janssen, T. Mayer, V. Dyakonov, W. Tress, T. Bein, Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202103215

    Article  Google Scholar 

  22. B.S. Sengar, V. Garg, A. Kumar, P. Dwivedi, IEEE Trans. Electron Devices 68, 2360 (2021). https://doi.org/10.1109/TED.2021.3066454

    Article  CAS  Google Scholar 

  23. D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, Nanomaterials 2018, 8148072 (2018). https://doi.org/10.1155/2018/8148072

    Article  CAS  Google Scholar 

  24. M. Feng, M. Wang, H. Zhou, W. Li, S. Wang, Z. Zang, S. Chen, ACS Appl. Mater. Interfaces 12, 50684 (2020). https://doi.org/10.1021/acsami.0c15923

    Article  CAS  Google Scholar 

  25. G. Longo, S. Mahesh, L.R.V. Buizza, A.D. Wright, A.J. Ramadan, M. Abdi-Jalebi, P.K. Nayak, L.M. Herz, H.J. Snaith, ACS Energy Lett. 5, 2200 (2020). https://doi.org/10.1021/acsenergylett.0c01020

    Article  CAS  Google Scholar 

  26. A. Basak, U.P. Singh, Sol. Energy Mater. Sol. Cells 230, 111184 (2021). https://doi.org/10.1016/j.solmat.2021.111184

    Article  CAS  Google Scholar 

  27. N. Kumar, D.S. Ghosh, A. Khare, Opt. Mater. (Amst). 129, 112517 (2022). https://doi.org/10.1016/j.optmat.2022.112517

    Article  CAS  Google Scholar 

  28. S. Ghosh, S. Porwal, T. Singh, Optik (Stuttg). 256, 168749 (2022). https://doi.org/10.1016/j.ijleo.2022.168749

    Article  CAS  Google Scholar 

  29. M.M. Salah, A. Zekry, M. Abouelatta, A. Shaker, M. Mousa, Crystals 12, 2070878 (2022). https://doi.org/10.3390/cryst12070878

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology (DST), Govt. of India for the financial assistance provided under DST SERB Project (File No. SRG/2021/002110) to carry out the present work. Dr. Amitesh Kumar would like to thank DST SERB for providing a Start-up Research Grant for this project to conduct research at NIT Patna. Mr. Pritam Kumar would like to thank the Department of Electrical Engineering, NIT Patna for providing research facilities. The authors are thankful to Prof. Marc Burgelman, University of Gent, Belgium for providing the SCAPS-1D software for our studies.

Funding

The authors acknowledge the Department of Science and Technology (DST), Govt. of India for the financial assistance provided under DST SERB Project (File No. SRG/2021/002110) to carry out the present work.

Author information

Authors and Affiliations

Authors

Contributions

PK contributed toward conceptualization, methodology, software, data curation, visualization, investigation, writing, and original draft preparation. AK contributed toward conceptualization, methodology, formal analysis, supervision, reviewing, and editing.

Corresponding author

Correspondence to Amitesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Kumar, A. High-performance optimization and analysis of Cs2AgBiBr6-based lead-free double perovskite solar cells. J Mater Sci: Mater Electron 34, 1810 (2023). https://doi.org/10.1007/s10854-023-11225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11225-9

Navigation