Skip to main content

Advertisement

Log in

Device engineering of double perovskite based solar cells towards high-performance, eco-friendly solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Conventional lead halide Perovskite Solar Cells (PSC) have toxicity and stability issues. Therefore it is crucial to look for lead-free inorganic perovskite material, such as La2NiMnO6, RbGeI3, CsGeI3, Cs2AgBiBr6 and others. There has been much work in the area of PSC using Cs2AgBiBr6 as an absorber, However, due to some critical issues of Cs2AgBiBr6, such as the film's broad bandgap which limits its capacity to absorb light, leading to corresponding PSC being typically restricted to around 4% efficiency. In this work, a lead-free PSC with Cs2AgBiBr6 as the absorber has been engineered to resolve the issues by considering the experimental works in the literature to increase efficiency to 6.3% from a maximum 4.48% as reported in the literature. The output response of both design approaches, as well as the potentiality of future designs, are investigated in terms of output parameters, i.e., Open-Circuit Voltage (VOC), Short-circuit Current density (JSC), Fill Factor (FF), and Power Conversion Efficiency (PCE). Besides, this work also focuses on eliminating Sulphur from ETLs by working on several sulphides and oxide-based Electron Transport Layers (ETLs). Several solar cell device structures have been analyzed for their numerical simulation with sulphide ETLs such as ZnS, WS2, CdS, CdZnS and oxide ETLs such as TiO2, ZnO, WO3, IGZO. To progress towards eco-friendly PSCs, alternatives to sulphide, several transparent oxide alternatives (TiO2, ZnO, WO3, IGZO) have been considered as ETLs. These ETLs have been further doped with Mg to enhance the performance parameters. Mg-doped based ETLs additionally behaving as Hole-blocking layers (HBLs) in corresponding PSCs leads to comparatively significantly better performance in a number of aspects, including VOC (1.21 V), PCE (5.74%), JSC, and FF. The solar cell design has been optimized for high performance through various techniques such as varying ETL and absorber thickness, interface defects variation, series/shunt resistance, band to band recombination, and bandgap grading through doping. Also an effective electric field (Eeff) that depicts the conduction's impact has been calculated. Best performing device among different designs among PSCs with sulphide and oxide-based ETLs has been ZnS/Cs2AgBiBr6/Cu2O (PCE-6.3%) and Mg-doped (20%) ZnO/Cs2AgBiBr6/Cu2O (PCE-5.74%). These results may help researchers in their efforts to find the best-suited materials for the design of high-performance PSCs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdulrahman, A.F., Ahmed, S.M., Ahmed, N.M., Almessiere, M.A.: Enhancement of ZnO nanorods properties using modified chemical bath deposition method: effect of precursor concentration. Crystals 10, 386 (2020). https://doi.org/10.3390/cryst10050386

    Article  Google Scholar 

  • Ahmed, S., Jannat, F., Khan, M.A.K., Alim, M.A.: Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik (Stuttg) 225, (2021). https://doi.org/10.1016/j.ijleo.2020.165765

  • Alam, I., Mollick, R., Ashraf, M.A.: Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers. Phys. B Condens. Matter. (2021). https://doi.org/10.1016/j.physb.2021.413187

    Article  Google Scholar 

  • Arshad, Z., Khoja, A.H., Shakir, S., Afzal, A., Mujtaba, M.A., Soudagar, M.E.M., Fayaz, H., Saleel, C.A., Farukh, S., Saeed, M.: Magnesium doped TiO2 as an efficient electron transport layer in perovskite solar cells. Case Stud. Therm. Eng. 26, 101101 (2021). https://doi.org/10.1016/j.csite.2021.101101

    Article  Google Scholar 

  • Azri, F., Meftah, A., Sengouga, N., Meftah, A.: Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy 181, 372–378 (2019). https://doi.org/10.1016/j.solener.2019.02.017

    Article  ADS  Google Scholar 

  • Bansal, S., Aryal, P.: Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations. 2017 IEEE 44th Photovolt. Spec. Conf. PVSC 2017, 3220–3223 (2017). https://doi.org/10.1109/PVSC.2017.8366107

    Article  Google Scholar 

  • Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

    Article  ADS  Google Scholar 

  • Cao, Z., Li, C., Deng, X., Wang, S., Yuan, Y., Chen, Y., Wang, Z., Liu, Y., Ding, L., Hao, F.: Metal oxide alternatives for efficient electron transport in perovskite solar cells: Beyond TiO2 and SnO2. J. Mater. Chem. A 8, 19768–19787 (2020). https://doi.org/10.1039/d0ta07282f

    Article  Google Scholar 

  • Chen, J., Luo, Z., Fu, Y., Wang, X., Czech, K.J., Shen, S., Guo, L., Wright, J.C., Pan, A., Jin, S.: Tin(IV)-tolerant vapor-phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3; X = Br, I) nanowires. ACS Energy Lett. 4, 1045–1052 (2019a). https://doi.org/10.1021/acsenergylett.9b00543

    Article  Google Scholar 

  • Chen, R., Cao, J., Duan, Y., Hui, Y., Chuong, T.T., Ou, D., Han, F., Cheng, F., Huang, X., Wu, B., Zheng, N.: High-efficiency, hysteresis-less, UV-stable perovskite solar cells with cascade ZnO–ZnS electron transport layer. J. Am. Chem. Soc. 141, 541–547 (2019b). https://doi.org/10.1021/jacs.8b11001

    Article  Google Scholar 

  • Das, S., Chakraborty, K., Choudhury, M.G., Paul, S.: Studies on thickness and internal quantum efficiency of Cs2AgBiBr6 based double perovskite material for photovoltaic application. J. Nano Electron. Phys. 13, 3018 (2021). https://doi.org/10.21272/jnep.13(3).03018

    Article  Google Scholar 

  • Dette, C., Pérez-Osorio, M.A., Kley, C.S., Punke, P., Patrick, C.E., Jacobson, P., Giustino, F., Jung, S.J., Kern, K.: TiO2 anatase with a bandgap in the visible region. Nano Lett. 14, 6533–6538 (2014). https://doi.org/10.1021/nl503131s

    Article  ADS  Google Scholar 

  • Etacheri, V., Roshan, R., Kumar, V.: Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces 4(5), 2717–2725 (2012)

    Article  Google Scholar 

  • Gao, W., Ran, C., Xi, J., Jiao, B., Zhang, W., Wu, M., Hou, X., Wu, Z.: High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2 % efficiency. ChemPhysChem 19, 1696–1700 (2018). https://doi.org/10.1002/cphc.201800346

    Article  Google Scholar 

  • Greul, E., Petrus, M.L., Binek, A., Docampo, P., Bein, T.: Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 5, 19972–19981 (2017). https://doi.org/10.1039/c7ta06816f

    Article  Google Scholar 

  • Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). https://doi.org/10.1038/nature14133

    Article  ADS  Google Scholar 

  • Ke, W., Stoumpos, C.C., Zhu, M., Mao, L., Spanopoulos, I., Liu, J., Kontsevoi, O.Y., Chen, M., Sarma, D., Zhang, Y., Wasielewski, M.R., Kanatzidis, M.G.: Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3. Sci. Adv. 3, 1–10 (2017). https://doi.org/10.1126/sciadv.1701293

    Article  Google Scholar 

  • Kharatzadeh, A., Jamali-Sheini, F., Yousefi, R.: Excellent photocatalytic performance of Zn(1 - x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater. Des. 107, 47–55 (2016). https://doi.org/10.1016/j.matdes.2016.06.007

  • Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  Google Scholar 

  • Kwak, C.H., Woo, H.S., Abdel-Hady. F., et al.: Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol. Sensors Actuators, B Chem 223, 527–534 (2016). https://doi.org/10.1016/j.snb.2015.09.120

  • Li, Z., Wang, R., Xue, J., Xing, X., Yu, C., Huang, T., Chu, J., Wang, K.L., Dong, C., Wei, Z., Zhao, Y., Wang, Z.K., Yang, Y.: Core-shell ZnO@SnO2 nanoparticles for efficient inorganic perovskite solar cells. J. Am. Chem. Soc. 141, 17610–17616 (2019). https://doi.org/10.1021/jacs.9b06796

    Article  Google Scholar 

  • Liu, Y., Li, X., Wang, J., Xu, L., Hu, B.: An extremely high power factor in Seebeck effects based on a new n-type copper-based organic/inorganic hybrid C6H4NH2CuBr 2I film with metal-like conductivity. J. Mater. Chem. A 5, 13834–13841 (2017). https://doi.org/10.1039/c7ta03015k

    Article  Google Scholar 

  • Mohandes, A., Moradi, M., Nadgaran, H.: Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D. Opt. Quantum Electron. 53, 1–22 (2021). https://doi.org/10.1007/s11082-021-02959-z

    Article  Google Scholar 

  • Ngoupo, A.T., Ouédraogo, S., Zougmoré, F., Ndjaka, J.M.B.: Numerical analysis of ultrathin Sb2Se3-based solar cells by SCAPS-1D numerical simulator device. Chin. J. Phys. 70, 1–13 (2021). https://doi.org/10.1016/j.cjph.2020.12.010

    Article  Google Scholar 

  • Niemegeers, A., Burgelman, M.: Numerical modelling of ac-characteristics of CdTe and CIS solar cells. In: Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996, pp. 901–904. (1996). https://doi.org/10.1109/pvsc.1996.564274

  • Niemegeers, A., Burgelman, M., Decock, K., Verschraegen, J., Degrave, S.: SCAPS manual. University of Gent, 13 (2014)

  • NREL, Best Research-Cell Efficiency Chart, in, 2022, Available: https://www.nrel.gov/pv/cell-efficiency.html

  • Paquin, F., Rivnay, J., Salleo, A., Stingelin, N., Silva, C.: Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015). https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  • Pindolia, G., Shinde, S.M., Jha, P.K.: Optimization of an inorganic lead free RbGeI 3 based perovskite solar cell by SCAPS-1D simulation. Sol. Energy 236, 802–821 (2022)

    Article  ADS  Google Scholar 

  • Rafieirad, R., Ganji, B.A.: Efficiency improvement of perovskite solar cells by utilizing cuins thin layer: modeling and numerical study. IEEE Trans. Electron Devices. 68, 4997–5002 (2021). https://doi.org/10.1109/TED.2021.3102536

    Article  ADS  Google Scholar 

  • Rai, N., Rai, S., Singh, P.K., Lohia, P., Dwivedi, D.K.: Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci. Mater. Electron. 31, 16269–16280 (2020). https://doi.org/10.1007/s10854-020-04175-z

    Article  Google Scholar 

  • Salem, M.S., Shaker, A., Othman, M.S., Al-Bagawia, A.H., Fedawy, M., Aleid, G.M.: Numerical analysis and design of high performance HTL-free antimony sulfide solar cells by SCAPS-1D. Opt. Mater. (amst). (2022). https://doi.org/10.1016/j.optmat.2021.111880

    Article  Google Scholar 

  • Schade, L., Mahesh, S., Volonakis, G., Zacharias, M., Wenger, B., Schmidt, F., Kesava, S.V., Prabhakaran, D., Abdi-Jalebi, M., Lenz, M., Giustino, F., Longo, G., Radaelli, P.G., Snaith, H.J.: Crystallographic, optical, and electronic properties of the Cs2AgBi1xInxBr6 double perovskite: understanding the fundamental photovoltaic efficiency challenges. ACS Energy Lett. 6, 1073–1081 (2021). https://doi.org/10.1021/acsenergylett.0c02524

    Article  Google Scholar 

  • Shi, Z., Guo, J., Chen, Y., Li, Q., Pan, Y., Zhang, H., Xia, Y., Huang, W.: Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. (2017). https://doi.org/10.1002/adma.201605005

    Article  Google Scholar 

  • Shukla, R., Kumar, R.R., Pandey, S.K.: theoretical study of charge carrier lifetime and recombination on the performance of eco-friendly perovskite solar cell. IEEE Trans. Electron Devices 68, 3446–3452 (2021). https://doi.org/10.1109/TED.2021.3078063

    Article  ADS  Google Scholar 

  • Sirtl, M.T., Hooijer, R., Armer, M., Ebadi, F.G., Mohammadi, M., Maheu, C., Weis, A., van Gorkom, B.T., Häringer, S., Janssen, R.A.J., Mayer, T., Dyakonov, V., Tress, W., Bein, T.: 2D/3D hybrid Cs2AgBiBr6 double perovskite solar cells: improved energy level alignment for higher contact-selectivity and large open circuit voltage. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202103215

    Article  Google Scholar 

  • Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). https://doi.org/10.1126/science.1243982

    Article  ADS  Google Scholar 

  • Wang, Y., Fan, H., Zhao, G., Liu, D., Du, L., Wang, Z.: High quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency. Chem. Phys. Chem. 19(14), 1696–1700 (2012). https://doi.org/10.1111/febs.12037

    Article  Google Scholar 

  • Wang, J., Qin, M., Tao, H., Ke, W., Chen, Z., Wan, J., Qin, P., Xiong, L., Lei, H., Yu, H., Fang, G.: Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer. Appl. Phys. Lett. DOI 10(1063/1), 121104 (2015)

    Article  ADS  Google Scholar 

  • Wang, D., Wright, M., Elumalai, N.K., Uddin, A.: Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255–275 (2016). https://doi.org/10.1016/j.solmat.2015.12.025

  • Wang, M., Zeng, P., Bai, S., Gu, J., Li, F., Yang, Z., Liu, M.: High-quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells. Sol. RRL 2, 1–6 (2018). https://doi.org/10.1002/solr.201800217

    Article  Google Scholar 

  • Wang, S., Wang, A., Deng, X., Xie, L., Xiao, A., Li, C., Xiang, Y., Li, T., Ding, L., Hao, F.: Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J. Mater. Chem. A 8, 12201–12225 (2020). https://doi.org/10.1039/d0ta03957h

    Article  Google Scholar 

  • Wang, B., Li, N., Yang, L., Agnese, C.D., Jena, A.K., Miyasaka, T., Wang, F.: Organic dye/Cs2 AgBiBr6 double perovskite heterojunction solar cells. J. Am. Chem. Soc. 143(36), 14877–14883 (2021a)

    Google Scholar 

  • Wang, B., Li, N., Yang, L., Dall’agnese, C., Jena, A.K., Sasaki, S.I., Miyasaka, T., Tamiaki, H., Wang, X.F.: Chlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cells. J. Am. Chem. Soc. 143, 2207–2211 (2021b). https://doi.org/10.1021/jacs.0c12786

    Article  Google Scholar 

  • Yadav, M.K., Ghosh, M., Biswas, R., Raychaudhuri, A.K., Mookerjee, A., Datta, S.: Band-gap variation in Mg- and Cd-doped ZnO nanostructures and molecular clusters. Phys. Rev. B Condens. Matter Mater. Phys. 76, 1–9 (2007). https://doi.org/10.1103/PhysRevB.76.195450

    Article  Google Scholar 

  • Yang, W.S., Park, B.W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H., Seok, S.I.: Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017). https://doi.org/10.1126/science.aan2301

    Article  ADS  Google Scholar 

  • Yella, A., Heiniger, L.P., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett. 14, 2591–2596 (2014). https://doi.org/10.1021/nl500399m

    Article  ADS  Google Scholar 

  • You, J., Meng, L., Song, T.B., Guo, T.F., Chang, W.H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., De Marco, N., Yang, Y.: Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016). https://doi.org/10.1038/nnano.2015.230

    Article  ADS  Google Scholar 

  • Yousefi, R., Kamaluddin, B.: Fabrication and characterization of ZnO and ZnMgO nanostructures grown using a ZnO/ZnMgO compound as the source material. Appl. Surf. Sci. 256, 329–334 (2009). https://doi.org/10.1016/j.apsusc.2009.08.025

  • Yousefi, R., Zak, A.K., Jamali-Sheini, F.: Growth, X-ray peak broadening studies, and optical properties of Mg-doped ZnO nanoparticles. Mater. Sci. Semicond. Process 16, 771–777 (2013). https://doi.org/10.1016/j.mssp.2012.12.025

  • Zhang, C., Gao, L., Hayase, S., Ma, T.: Current advancements in material research and techniques focusing on lead-free perovskite solar cells. Chem. Lett. 46, 1276–1284 (2017). https://doi.org/10.1246/cl.170345

    Article  Google Scholar 

  • Zhang, T., Li, H., Ban, H., Sun, Q., Shen, Y., Wang, M.: Efficient CsSnI3-based inorganic perovskite solar cells based on a mesoscopic metal oxide framework via incorporating a donor element. J. Mater. Chem. A 8, 4118–4124 (2020). https://doi.org/10.1039/c9ta11794f

    Article  Google Scholar 

  • Zhao, D., Liang, C., Wang, B., Liu, T., Wei, Q., Wang, K., Gu, H., Wang, S., Mei, S., Xing, G.: Overcoming the limitation of Cs2AgBiBr6 double perovskite solar cells through using mesoporous TiO2 electron extraction layer. Energy Environ Mater 1317–1322 (2021). https://doi.org/10.1002/eem2.12249

    Article  Google Scholar 

  • Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H. S., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology (DST), Govt. of India for the financial assistance provided under DST SERB Project (File No. SRG/2021/002110) to carry out the present work. Dr. Amitesh Kumar would like to thank DST SERB for providing a Start-up Research Grant for this project to conduct research at NIT Patna. Mr. Parshuram Singh would like to thank the Ministry of Education and NIT Patna for the research fellowship. The authors are thankful to NIT Patna for providing research facilities.

Funding

The authors acknowledge the Department of Science and Technology (DST), Govt. of India for the financial assistance provided under DST SERB Project (File No. SRG/2021/002110) to carry out the present work.

Author information

Authors and Affiliations

Authors

Contributions

PS: Conceptualization, Methodology, Software, Data curation, Visualization, Investigation Writing—Original draft preparation. AK: Conceptualization, Methodology, Supervision, Reviewing and Editing. Visualization, Investigation.

Corresponding author

Correspondence to Amitesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

Not applicable.

Consent for publication

The authors have given Consent for Publication as per the journal policy.

Ethical approval

Not applicable. The work presented in this manuscript is modeling only for the proposed solarcell. No experiment was performed on the human body and living organism/animal. So, ethical approval from an ethical committee is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Kumar, A. Device engineering of double perovskite based solar cells towards high-performance, eco-friendly solar cells. Opt Quant Electron 55, 304 (2023). https://doi.org/10.1007/s11082-023-04580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04580-8

Keywords

Navigation