Skip to main content
Log in

Physical, Structural, and Optical Characteristics of Manganese Ion-Containing Low-Melting Borate Glasses

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Manganese(II) borate glasses with chemical composition (55 − x)B2O3-25Li2O-10Na2O-5CaO-3SrO-2Al2O3-xMnO2: x = 0.0 (G1)–2.0 (G5) mol.% were successfully prepared using the traditional melt quenching route, and the physical properties, optical characteristics, and Fourier transform infrared (FTIR) spectroscopy were investigated. The density (Ds) increased from 2.367 g/cm3 to 2.510 g/cm3, and the molar volume (Vm) decreased from 25.31 cm3/mol to 24.01 cm3/mol. The average boron–boron distance ‹dB–B› decreased from 3.60 nm to 3.54 nm, whereas the ion concentration (NMn) increased from 0.118 × 1020 ions/cm3 to 5.02 × 1020 ions/cm3 as the MnO2 increased from 0.0 mol.% to 2 mol.% in the glass network. The packing density (Pd) values increased from 0.49 to 0.51, but the free volume Vf enhanced from 0.278 × 1016 g/mol cm2 to 3.38 × 1016 g/mol cm2 as MnO2 increased. FTIR spectroscopy showed the change in internal structure and confirmed that [BO3] units favor a coordination change to [BO4] over creating non-bridging oxygen (NBO). The optical band gap (Eg) decreased with increasing MnO2 content from 0.0 mol.% to 0.4 mol.%, then increased with increasing MnO2 content from 1 mol.% to 2 mol.%. Urbach energy (ΔE) values between 0.242 eV and 0.529 eV were obtained by increasing MnO2 in the glass matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.P. Pawar, S.R. Munishwar, S. Gautam, and R.S. Gedam, Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED. J. Lumin. 183, 79 (2017).

    Article  CAS  Google Scholar 

  2. J. Singh, D. Singh, S.P. Singh, G.S. Mudahar, and K.S. Thind, Optical characterization of sodium borate glasses with different glass modifiers. Mater. Phys. Mech. 19(1), 9 (2014).

    CAS  Google Scholar 

  3. L.D. Pye, V.D. Fréchette, and N.J. Kreidl, Borate glasses: structure, properties, applications, Vol. 12 (New York: Springer, 1978).

    Book  Google Scholar 

  4. N.N. Vinogradova, L.N. Dmitruk, and O.B. Petrova, Glass transition and crystallization of glasses based on rare-earth borates. Glass Phys. Chem. 30, 1 (2004).

    Article  CAS  Google Scholar 

  5. P.P. Pawar, S.R. Munishwar, and R.S. Gedam, Physical and optical properties of Dy3+/Pr3+ Co-doped lithium borate glasses for W-LED. J. Alloys Compd. 660, 347 (2016).

    Article  CAS  Google Scholar 

  6. H. Lin, D. Yang, G. Liu, T. Ma, B. Zhai, Q. An, J. Yu, X. Wang, X. Liu, and E.Y.B. Pun, Optical absorption and photoluminescence in Sm3+-and Eu3+-doped rare-earth borate glasses. J. Lumin. 113(1–2), 121 (2005).

    Article  CAS  Google Scholar 

  7. S.A.M. Issa, M. Rashad, H.M.H. Zakaly, H.O. Tekin, and A.S. Abouhaswa, Nb2O5-Li2O-Bi2O3-B2O3 novel glassy system: evaluation of optical, mechanical, and gamma shielding parameters. J. Mater. Sci. Mater. Electron. 31, 22039 (2020).

    Article  CAS  Google Scholar 

  8. M.Y.A. Mostafa, H.M.H. Zakaly, S.A.M. Issa, H.A. Saudia, and A.M.A. Henaish, Tailoring variations in the linear optical and radiation shielding parameters of PVA polymeric composite films doped with rare-earth elements. Appl. Phys. A 128, 199 (2022).

    Article  CAS  Google Scholar 

  9. K. Patek, Effects of glass composition, Vol. 1 (Cambridge: CRC Press, 1970), pp.113–118.

    Google Scholar 

  10. P. Pascuta, R. Lungu, and I. Ardelean, FTIR and Raman spectroscopic investigation of some strontium–borate glasses doped with iron ions. J. Mater. Sci. Mater. Electron. 21, 548 (2010).

    Article  CAS  Google Scholar 

  11. M.K. Halimah, W.H. Chiew, H.A.A. Sidek, W.M. Daud, Z.A. Wahab, A.M. Khamirul, and S.M. Iskandar, Optical properties of lithium borate glass (Li2O) × (B2O3). Sains Malaysiana 43(6), 899 (2014).

    CAS  Google Scholar 

  12. C. Jiang, Y. Huang, E. Cho, H.S. Lee, K. Jang, and S.S. Yi, The luminescence properties of Eu2+ ions doped in SrO-B2O3-Li2O glasses and glass-ceramics. J. Korean Phys. Soc. 53(4), 2105 (2008).

    Article  CAS  Google Scholar 

  13. V. K’yao and P. Chen, Properties of lead-free Bi2O3-B2O3-BaO glasses used in pastes for the electronic industry. Fiz. Khim. Stekla 36(3), 376 (2010).

    Google Scholar 

  14. A.M. Abdelghany and Y.S. Rammah, Transparent alumino lithium borate glass-ceramics: synthesis, structure and gamma-ray shielding attitude. J. Inorg. Organomet. Polym. Mater. 31, 2560 (2021).

    Article  CAS  Google Scholar 

  15. E.M. Abdallah, M.S. Meikhail, A. El-Adawy, H.A. Othman, and A.M. Abdelghany, Structural and antibacterial peculiarities of modified borate bioglass containing mixed dopant oxides. J. Bio-and Tribo-Corrosion 8(2), 39 (2020).

    Article  Google Scholar 

  16. S. Hashim, M.H.A. Mhareb, S.K. Ghoshal, Y.S.M. Alajerami, D.A. Bradley, M.I. Saripan, N. Tamchek, and K. Alzimami, Luminescence characteristics of Li2O-MgO-B2O3 doped with Dy3+ as a solid TL detector. Radiat. Phys. Chem 116, 138 (2015).

    Article  CAS  Google Scholar 

  17. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16(12), 1214 (1983).

    Article  CAS  Google Scholar 

  18. K. Kirdsiri, R.R. Ramakrishna, B. Damdee, H.J. Kim, S. Kaewjaeng, S. Kothan, and J. Kaewkhao, Investigations of optical and luminescence features of Sm3+ doped Li2O-MO-B2O3 (M= Mg/Ca/Sr/Ba) glasses mixed with different modifier oxides as an orange light emitting phosphor for WLED’s. J. Alloys Compd. 749, 197 (2018).

    Article  CAS  Google Scholar 

  19. N.M. Bobkova and E.E. Trusova, Low-melting bismuth–borate glass: composition development. Glass Ceram. 68, 349 (2012).

    Article  CAS  Google Scholar 

  20. N.M. Bobkova and S.A. Khot'ko, Low-melting glasses based on borate systems. Glass Ceram. 61, 175 (2004).

    Article  CAS  Google Scholar 

  21. A. Margaryan, A. Margaryan, J.H. Choi, and F.G. Shi, Spectroscopic properties of Mn2+ in new bismuth and lead contained fluorophosphate glasses. Appl. Phys. B 78, 409 (2004).

    Article  CAS  Google Scholar 

  22. N.J. Kreidl, Recent applications of glass science. J. Non-cryst. solids 123(1–3), 377 (1990).

    Article  CAS  Google Scholar 

  23. M.H. Misbah, A.M. Abdelghany, M. El-Kemary, and Y.S. Rammah, Mixed modifier effect in lithium manganese metaphosphate glasses on the emission of highly dispersed Mn2+ centers for red-LED. Ceram. Int. 47(22), 32424 (2021).

    Article  CAS  Google Scholar 

  24. S.S. Sastry and B.R.V. Rao, Influence of various glass compositions on physical and spectroscopic properties of Cao-Pb3O4-ZnO-P2O5 glass system. Int. J. Innov. Res. Sci. Eng. Technol. 4(01), 18681 (2015).

    Article  Google Scholar 

  25. I. Ardelean, S. Cora, R.C. Lucacel, and O. Hulpus, EPR and FT-IR spectroscopic studies of B2O3Bi2O3MnO glasses. Solid State Sci. 7(11), 1438 (2005).

    Article  CAS  Google Scholar 

  26. N.F. Mott and E.A. Davis, Electronic processes in non-crystalline materials (Oxford: Oxford University Press, 2012).

    Google Scholar 

  27. G.P. Singh, P. Kaur, S. Kaur, and D.P. Singh, Conversion of covalent to ionic character of V2O5-CeO2-PbO-B2O3 glasses for solid state ionic devices. Physica B 407(21), 4269 (2012).

    Article  Google Scholar 

  28. K. Annapurna and S. Buddhudu, Characterization of fluorophosphate optical glasses. J. Solid State Chem. 93(2), 454 (1991).

    Article  CAS  Google Scholar 

  29. A. Wagh, Y. Raviprakash, V. Upadhyaya, and S.D. Kamath, Composition dependent structural and optical properties of PbF2-TeO2-B2O3-Eu2O3 glasses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 151, 696 (2015).

    Article  CAS  Google Scholar 

  30. V.V. Gowda, Effect of Bi3+ ions on physical, thermal, spectroscopic and optical properties of Nd3+ doped sodium diborate glasses. Phys. B: Condens. Matter 426, 58 (2013).

    Article  Google Scholar 

  31. G. El Damrawi, A.K. Hassan, and A. Shahboub, Chemical durability and structure of Al2O3-Ag2O-P2O5 glasses. Appl. Phys. A 126, 1 (2020).

    Article  Google Scholar 

  32. N.M. Bobkova and S.A. Khotko, Structure of zinc-borate low-melting glasses derived from IR spectroscopy data. J. Appl. Spectrosc. 72, 853 (2005).

    Article  CAS  Google Scholar 

  33. A.M. Abdelghany, G.M. El-Damrawi, and E.G. Elbasuoni, Structural and biophysical peculiarities of Nd2O3 doped borate bioglass. Ceram. Int. 49, 20365 (2023).

    Article  CAS  Google Scholar 

  34. A.M. Abdelghany and A. Behairy, Optical parameters, antibacterial characteristics and structure correlation of copper ions in cadmium borate glasses. J. Mater. Res. Technol. 9(5), 10491 (2020).

    Article  CAS  Google Scholar 

  35. A.M. Abdel-Aziz, M.S. Shams, E.M. Ahmed, Y.S. Rammah, and R.A. Elsad, Fabrication, physical, FTIR, ultrasonic waves, and mechanical properties of quaternary B2O3-Bi2O3-NaF-ZrO2 glasses: experimental study. Appl. Phys. A 128(7), 585 (2022).

    Article  CAS  Google Scholar 

  36. D.P. Singh and G.P. Singh, Conversion of covalent to ionic behavior of Fe2O3-CeO2-PbO-B2O3 glasses for ionic and photonic application. J. Alloys Compd 546, 224 (2013).

    Article  CAS  Google Scholar 

  37. P. Pascuta, L. Pop, S. Rada, M. Bosca, and E. Culea, The local structure of bismuth borate glasses doped with europium ions evidenced by FT-IR spectroscopy. J. Mater. Sci. Mater. Electron. 19, 424 (2008).

    Article  CAS  Google Scholar 

  38. E.I. Kamitsos, Infrared studies of borate glasses. Phys. Chem. Glasses 44(2), 79 (2003).

    CAS  Google Scholar 

  39. A.M. Abdelghany, The elusory role of low level doping transition metals in lead silicate glasses. Silicon 2, 179 (2010).

    Article  CAS  Google Scholar 

  40. R.S. Chakradhar, B. Yasoda, J.L. Rao, and N.O. Gopal, EPR and optical studies of Mn2+ ions in Li2O-Na2O-B2O3 glasses–An evidence of mixed alkali effect. J. Non-Cryst. Solids 353(24–25), 2355 (2007).

    Article  CAS  Google Scholar 

  41. Z. Luo and A. Lu, Thermal properties and optical band gap of a novel high UV transmitting glass. Optoelectron. Adv. Mater. Rapid Commun. 6(November-December 2012), 993 (2012).

    CAS  Google Scholar 

  42. A. Murali and J.L. Rao, Spectroscopic investigations on Cu (II) ions doped in alkali lead borotellurite glasses. J. Phys. Condens. Matter 11(40), 7921 (1999).

    Article  CAS  Google Scholar 

  43. M.A. Hassan and C.A. Hogarth, A study of the structural, electrical and optical properties of copper tellurium oxide glasses. J. Mater. Sci. 23, 2500 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Princess Nourah bint Abdulrahman University researchers supporting project number (PNURSP2023R28), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Relevant research data are included in the text of the work. All authors contributed in conceptualization, methodology, software, validation, investigation, data curation, writing—review and editing, and visualization

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for Publication

The authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, W., Al-Ghamdi, H., Alsaif, N.A.M. et al. Physical, Structural, and Optical Characteristics of Manganese Ion-Containing Low-Melting Borate Glasses. J. Electron. Mater. 52, 7230–7238 (2023). https://doi.org/10.1007/s11664-023-10649-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10649-7

Keywords

Navigation