Skip to main content
Log in

Fabrication, physical, FTIR, ultrasonic waves, and mechanical properties of quaternary B2O3–Bi2O3–NaF–ZrO2 glasses: Experimental study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An experimental study for fabrication, physical, FTIR spectroscopy, ultrasonic waves, and mechanical properties of quaternary B2O3–Bi2O3–NaF–ZrO2 glasses was introduced. The fabricated glasses have the chemical formula 65B2O3–25NaF–(10-x)Bi2O3xZrO2; x = 0 (Zr0), 2 (Zr2), 4 (Zr4), 5 (Zr5), and 6 (Zr6) mol% and produced via the melt quenching process. The longitudinal VL and shear VS velocities were measured using ultrasonic flaw detector. FTIR spectra were recorded in the wavenumber range 400–1550 cm−1. The density of the fabricated glasses reduces linearly from 3400 ± 6 (kg/m3) for Zr0 sample with free ZrO2 to 3099 ± 4 (kg/m3) for Zr6 sample with highest content of ZrO2. The oxygen packing density (OPD) rises from 74,742 to 82,980 kg atom/m3 when increasing content of ZrO2 from 0 to 6 mol%, respectively. The number of N3 was increased which the number of N4 decreased with ZrO2 concentration which confirms that the decreasing formation of BO4 units with ZrO2 content. Both VL and VS are persistently increasing for all range of the studied samples; such a behavior is ascribed to increments in number of strong Ø’s units. The insertion of ZrO2 in glasses network leads to improve their elastic moduli. Higher values of Debye temperature (θD) are found with increasing ZrO2 content that means higher thermal energy needed for excitation the corresponding vibrational mode. Makishima–Mackenzie values of Young (YM) and bulk (BM) moduli were in good agreement with the experimental results. Therefore, the increasing trends of YM and BM are similar to those of Young (Y) and bulk (B) moduli assuring the effect of [ZrO6]2− on introducing strengthened bonds into borate lattice. In addition, the microhardness (Hv) was found to increase with ZrO2 content; therefore, the glass system gets harder and stiffer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All authors contribute in conceptualization, methodology, software, validation, investigation, data curation, writing—review and editing, and visualization.

References

  1. C.M. Reddy, G. Dillip, B.D.P. Raju, Spectroscopic and photoluminescence characteristics of Dy3+ ions in lead containing sodium fluoroborate glasses for laser materials. J. Phys. Chem. Solids 72, 1436–1441 (2011)

    ADS  Google Scholar 

  2. G. Lakshminarayana, A. Meza-Rocha, O. Soriano-Romero, E. Huerta, U. Caldiño, A. Lira, D.-E. Lee, J. Yoon, T. Park, Pr3+-doped B2O3-Bi2O3-ZnO-NaF glasses comprising alkali/mixed alkali oxides for potential warm white light generation, blue laser, and E-+ S-+ C-optical bands amplification applications. J. Market. Res. 13, 2501–2526 (2021)

    Google Scholar 

  3. M. Mariyappan, S. Arunkumar, K. Marimuthu, Effect of Bi2O3 on JO parameters and spectroscopic properties of Er3+ incorporated sodiumfluoroborate glasses for amplifier applications. J. Non-Cryst. Solids 532, 119891 (2020)

    Google Scholar 

  4. A. Abd El-Rehim, K.S. Shaaban, Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses. J Mater Sci Mater Electron. 32, 4651–4671 (2021)

    Google Scholar 

  5. M. Mariyappan, S. Arunkumar, K. Marimuthu, White light emission and spectroscopic properties of Dy3+ ions doped bismuth sodiumfluoroborate glasses for photonic applications. J. Alloy. Compd. 723, 100–114 (2017)

    Google Scholar 

  6. D. Umamaheswari, B. Jamalaiah, T. Sasikala, T. Chengaiah, I.-G. Kim, L.R. Moorthy, Photoluminescence and decay behavior of Tb3+ ions in sodium fluoro-borate glasses for display devices. J. Lumin. 132, 1166–1170 (2012)

    Google Scholar 

  7. M.K. Murthy, K. Murthy, N. Veeraiah, Dielectric properties of NaF-B2O3 glasses doped with certain transition metal ions. Bull. Mater. Sci. 23, 285–293 (2000)

    Google Scholar 

  8. A. Pronkin, V. Naraev, I. Murin, I. Sokolov, Concentration dependence of electric conductivity for fluorine-containing sodium borate glasses. Glass Phys. Chem 26, 268–273 (2000)

    Google Scholar 

  9. H. Doweidar, K. El-Egili, R. Ramadan, E. Khalil, Structural species in mixed-fluoride PbF2–CdF2–B2O3 borate glasses; FTIR investigation. Vib. Spectrosc. 102, 24–30 (2019)

    Google Scholar 

  10. C. Jager, U. Haubenreisser, A reexamination of studies of the structure of NaF-Na2O-B2O3 glasses. Phys. Chem. Glasses 26, 152–156 (1985)

    Google Scholar 

  11. A. Balakrishna, S. Babu, V. Kumar, O. Ntwaeaborwa, Y. Ratnakaram, Optical properties and spectroscopic study of different modifier based Pr3+: LiFB glasses as optical amplifiers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 170, 167–173 (2017)

    ADS  Google Scholar 

  12. R. Prasad, B.V. Siva, K. Neeraja, N.K. Mohan, J.I. Rojas, Effect of modifier oxides on spectroscopic and optical properties of Pr3+ doped PbO-Ro2O3–WO3–B2O3 glasses (with Ro2O= Sb2O3, Al2O3, and Bi2O3). J. Lumin. 230, 117666 (2021)

    Google Scholar 

  13. A.S. Abouhaswa, Y.S. Rammah, M.I. Sayyed, H.O. Tekin, Synthesis, structure, optical and gamma radiation shielding properties of B2O3-PbO2-Bi2O3 glasses. Compos. B 172, 218–225 (2019). https://doi.org/10.1016/j.compositesb.2019.05.040

    Article  Google Scholar 

  14. Y.S. Rammah, A. Askin, A.S. Abouhaswa, F.I. El-Agawany, M.I. Sayyed, Synthesis, physical, structural and shielding properties of newly developed B2O3–ZnO–PbO–Fe2O3 glasses using Geant4 code and WinXCOM program. Appl. Phys. A 125, 523 (2019). https://doi.org/10.1007/s00339-019-2831-2

    Article  ADS  Google Scholar 

  15. M.I. Sayyed, I.A. El-Mesady, A.S. Abouhaswa, A. Askin, Y.S. Rammah, Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 1197, 656–665 (2019). https://doi.org/10.1016/j.molstruc.2019.07.100

    Article  ADS  Google Scholar 

  16. P.S. Gahlot, V.P. Seth, A. Agarwal, S. Sanghi, P. Chand, D.R. Goyal, Role of PbO in EPR, optical properties and DC conductivity of vanadyl-doped alkali lead borate glasses. Physica B 355, 44–53 (2005)

    ADS  Google Scholar 

  17. A. Veerabhadra Rao, C. Laxmikanth, B. Appa Rao, N. Veeraiah, Dielectric relaxation and ac conduction phenomena of PbO-PbF2 -B2O3 glasses doped with FeO. J. Phys. Chem. Solid. 67, 2263–2274 (2006)

    ADS  Google Scholar 

  18. W.A. Pisarski, G. Dominiak-Dzik, W. Ryba-Romanowski, J. Pisarska, Role of PbO substitution by PbF2 on structural behavior and luminescence of rare earth-doped lead borate glass. J. Alloy. Comp. 451, 220–222 (2008)

    Google Scholar 

  19. M. Sołtys, A. Górny, J. Pisarska, W.A. Pisarski, Lead borate glasses triply doped with Dy3+/Tb3+/Eu3+ ions for white emission. Opt. Mater. 82, 110–115 (2018)

    ADS  Google Scholar 

  20. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3– Bi2O3– ZnO – CaO glasses. Ceram. Int. 45, 20724–20732 (2019). https://doi.org/10.1016/j.ceramint.2019.07.056

    Article  Google Scholar 

  21. M.I. Sayyed, Y.S. Rammah, F. Laariedh, A.S. Abouhaswa, T.-B. Badeche, Effect of Bi2O3 on some optical and gamma-photon-shielding properties of new bismuth borate glasses. Appl. Phys. A 125, 649 (2019). https://doi.org/10.1007/s00339-019-2958-1

    Article  ADS  Google Scholar 

  22. Y.S. Rammah, S.A.M. Issa, H.M.H. Zakaly, H.O. Tekin, E. Yousef, A.S. Abouhaswa, B2O3-Bi2O3-Li2O3-Cr2O3 glasses: fabrication, structure, mechanical, and gamma radiation shielding qualities. J. Aust. Ceram. Soc. 57, 1057–1069 (2021). https://doi.org/10.1007/s41779-021-00599-w

    Article  Google Scholar 

  23. Y.S. Rammah, E. Kavaz, H. Akyildirim, F.I. El-Agawany, Evaluation of photon, neutron, and charged particle shielding competences of TeO2-B2O3-Bi2O3-TiO2 glasses. J. Non-Cryst. Solids 353, 119960 (2020)

    Google Scholar 

  24. H.H. Hegazy, M.S. Al-Buriahi, F. Alresheedi, F.I. El-Agawany, C. Sriwunkum, R. Neffati, Y.S. Rammah, Nuclear shielding properties of B2O3–Bi2O3–SrO glasses modified with Nd2O3: theoretical and simulation studies. Ceram. Int. 47, 2772–2780 (2021). https://doi.org/10.1016/j.ceramint.2020.09.131

    Article  Google Scholar 

  25. I.O. Olarinoye, F.I. El-Agawany, A. Gamal, Y.S. El Sayed Yousef, Rammah, Investigation of mechanical properties, photons, neutrons, and charged particles shielding characteristics of Bi2O3 /B2O3 /SiO2 glasses. Appl. Phys. A 127, 223 (2021). https://doi.org/10.1007/s00339-021-04365-4

    Article  ADS  Google Scholar 

  26. A.S. Abouhaswa, I.O. Olarinoye, N.V. Kudrevatykh, E.M. Ahmed, Y.S. Rammah, Bi2O3 reinforced B2O3 + Sb2O3 + Li2O: composition, physical, linear optical characteristics, and photon attenuation capacity. J. Mater. Sci. Mater Electron 32, 12439–12452 (2021). https://doi.org/10.1007/s10854-021-05875-w

    Article  Google Scholar 

  27. N. Singh, K.J. Singh, K. Singh, H. Singh, Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials. Nucl. Instrum. Methods Phys. Res. Sect. B 225(3), 305–309 (2004)

    ADS  Google Scholar 

  28. E. Kamitsos, M. Karakassides, A spectroscopic study of fluoride containing sodium borate glasses. Solid State Ionics 28, 783–787 (1988)

    Google Scholar 

  29. E. Hakan Akyildirim, F.I. Kavaz, E. El-Agawany, Y.S.R. Yousef, Radiation shielding features of zirconolite silicate glasses using XCOM and FLUKA simulation code. J. Non-Cryst Solids 545, 120245 (2020)

    Google Scholar 

  30. R.A. Elsad, A.M. Abdel-Aziz, E.M. Ahmed, Y.S. Rammah, F.I. El-Agawany, M.S. Shams, FT-IR, ultrasonic and dielectric characteristics of neodymium (III)/erbium(III) lead-borate glasses: experimental study. J Mater Res Technol 13, 1363–1373 (2021)

    Google Scholar 

  31. H.A. Afifi, I.Z. Hager, N.S. Abdel Aal, A.M. Abd El-Aziz, Study of the effect of Ni additive in YBa2Cu3O7-δ superconducting composite employing ultrasonic measurement. Measurement 135, 928–934 (2019)

    ADS  Google Scholar 

  32. M.S. Gaafar, S.Y. Marzouk, I.S. Mahmouda, M. Ben Hendaa, M. Afifi, A.M. Abd El-Aziz, M. Alhabradi, Role of neodymium on some acoustic and physical properties of Bi2O3-B2O3-SrO glasses. J. Mater. Res. Technol. 9(4), 7252–7261 (2020)

    Google Scholar 

  33. A.M. Abdel-Aziz, R.A. Elsad, E.M. Ahmed, Y.S. Rammah, F.I. El-Agawany, M.S. Shams, Physical, FTIR, ultrasonic and dielectric characteristics of calcium lead-borate glasses mixed by Nd2O3/Er2O3 rare earths: experimental study. J. Mater. Sci. 32, 19966–19979 (2021)

    Google Scholar 

  34. R.D. Shannon, revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A 32, 751–767 (1976)

    ADS  Google Scholar 

  35. A.E. Miray Celikbilek, Glass formation and characterization studies in the TeO2–WO3–Na2O system. J. Am. Ceram. Soc. 96(5), 1470–1476 (2013)

    Google Scholar 

  36. M.A. Muhammad Altaf, Physical properties of lithium containing cadmium. J. Sci. Res. 1, 201–205 (2010)

    Google Scholar 

  37. F. Berkemeier, S. Voss, Á.W. Imre, H. Mehrer, Molar volume, glass-transition temperature, and ionic conductivity of Na- and Rb-borate glasses in comparison with mixed Na–Rb borate glasses. J. Non. Cryst. Solids 351, 3816–3825 (2005)

    ADS  Google Scholar 

  38. C.P.E. Varsamis, N. Makris, C. Valvi, E.I. Kamitsos, Short-range structure, the role of bismuth and property–structure correlations in bismuth borate glasses. Phys. Chem. Chem. Phys. 23, 10006–10020 (2021)

    Google Scholar 

  39. C.S.P. Kumar, L. Srinivasa Rao, K. Aruna Prabha, P. Raghavendra Rao, Effect of zirconium oxide nanoparticles on physical, structural and magnetic properties of Bi2O3-B2O3-MnO2 glasses. Ceram. Int. 46(18), 28292–28299 (2020). https://doi.org/10.1016/j.ceramint.2020.07.332

    Article  Google Scholar 

  40. Fu. Wang, Q. Liao, K. Chen, S. Pan, Lu. Mingwei, The crystallization and FTIR spectra of ZrO2-doped 36Fe2O3–10B2O3–54P2O5 glasses and crystalline compounds. J. Alloy. Compd. 611, 278–283 (2014)

    Google Scholar 

  41. B.deB. Darwent, National Standard Reference Data Series, Vol. 31 (National Bureau of Standards, Washington, DC, 1970)

    Google Scholar 

  42. A.V. Egorysheva, A.S. Kanishcheva, Yu.F. Kargin, Yu.N. Mikhailov, V.M. Skorikov, Bismuth aluminoborate Bi0.96Al2.37(B4O10)O: Synthesis and crystal structure, Russ. J. Inorg. Chem. 52, 58–61 (2007)

    Google Scholar 

  43. G. Ferlat, L. Cormier, M.H. Thibault, L. Galoisy, G. Calas, J.M. Delaye, D. Ghaleb, Evidence for symmetric cationic sites in zirconium-bearing oxide glasses. Phys. Rev. B73, 214207 (2006)

    ADS  Google Scholar 

  44. A.J. Connelly, K.P. Travis, R.J. Hand, N.C. Hyatt, Composition-structure relationships in simplified nuclear waste glasses: 2. The effect of ZrO2 additions. J. Am. Ceram. Soc. 94, 137–144 (2011)

    Google Scholar 

  45. O. Bouty, L. Ramond, P.L. Solari, S. Cammelli, XANES analysis of a Cm-doped borosilicate glass under alpha -self-irradiation effects. J. Mater. Sci. 51(17), 7918–7928 (2016)

    ADS  Google Scholar 

  46. O. Bouty, S. Cammelli, P.L. Solari, Structural insights for the International Simple Glass by combining X-ray absorption spectroscopic analysis and atomistic modelling. J. Non-Cryst. Solids 499, 434–440 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.11.013

    Article  ADS  Google Scholar 

  47. L. Galoisy, E. Pélegrin, M.-A. Arrio, P. Ildefonse, G. Calas, J. Am. Ceram. Soc. 82, 2219 (1999)

    Google Scholar 

  48. X. Lu, L. Deng, S. Kerisit, J. Du, Structural role of ZrO2 and its impact on properties of boroaluminosilicate nuclear waste glasses. npj Mater Degrad 2, 19 (2018)

    Google Scholar 

  49. L. Barbieri, A. Corradi, I. Lancelloti, C. Leonelli, C. Siligardi, J. Mater. Sci. 38, 2627 (2003)

    ADS  Google Scholar 

  50. A. Makishima, J.D. Mackenzie, Direct calculation of Young’s moidulus of glass. J. Non-Cryst. Solids 12, 35–45 (1973)

    ADS  Google Scholar 

  51. A. Makishima, J.D. Mackenzie, Calculation of bulk modulus, shear modulus and Poisson’s ratio of glass. J. Non-Cryst. Solids 17, 147–157 (1975)

    ADS  Google Scholar 

  52. S. Inaba, K. Oda, Morinaga, heat capacity of oxide glasses at high temperature region. J. Non-Cryst. Solids 325, 258–266 (2003)

    ADS  Google Scholar 

  53. K. Sathish, S. Thirumaran, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 147, 163–172 (2015)

    ADS  Google Scholar 

  54. L.G. Hwa, T.H. Lee, S.P. Szu, Elastic properties of lanthanum aluminosilicate glasses. Mater. Res. Bull. 39, 33–40 (2004)

    Google Scholar 

  55. A.M. Abdel-Aziz, R.A. Elsad, E.M. Ahmed, Y.S. Rammah, M.S. Shams, M.H. Misbah, Synthesis, physical, ultrasonic waves, mechanical, FTIR, and dielectric characteristics of B2O3/Li2O/ZnO glasses doped with Y3+ ions. J Mater Sci Mater Electron 33, 6603–6615 (2022). https://doi.org/10.1007/s10854-022-07835-4

    Article  Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project number (TURSP-2020/84), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Aziz, A.M., Shams, M.S., Ahmed, E.M. et al. Fabrication, physical, FTIR, ultrasonic waves, and mechanical properties of quaternary B2O3–Bi2O3–NaF–ZrO2 glasses: Experimental study. Appl. Phys. A 128, 585 (2022). https://doi.org/10.1007/s00339-022-05732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05732-5

Keywords

Navigation