Skip to main content
Log in

Urchin-Like NiCo2O4@Ni3S2 Core/Shell Nanostructure as Supercapacitor Electrode

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Urchin-like NiCo2O4 nanoneedles were grown on a nickel foam via hydrothermal synthesis, and then the surface of the structure was modified to a candle-like nano-array via electrodepositing of Ni3S2. The resulting structure was analyzed as a supercapacitor electrode by x-ray diffraction, high-resolution scanning electron microscopy, and electrochemical measurements. Based on the electrochemical measurements, the NiCo2O4@Ni3S2 core–shell structure electrode exhibited a remarkable specific capacity of 1800 F g−1, and a rate capability of 1764 F g−1 at 2 mVs−1. This electrode also maintained 98% capacity after 2000 cycles at this current density. These results are promising compared to the electrochemical performance of the NiCo2O4 electrode (specific capacity of 1460 F g−1 and 86% capacity retention after 2000 cycles at a scan rate of 2 mVs−1). It is therefore concluded that the surface modification of the NiCo2O4 electrode facilitates electron transfer and cause an advancement in the capacitive performance of the NiCo2O4@Ni3S2 electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.L. Filho, J.M. Luetz, and D. Ayal, Handbook of Climate Change Management (Springer, 2021).

    Google Scholar 

  2. A. Kafetzis, C. Ziogou, K.D. Panopoulos, S. Papadopoulou, P. Seferlis, and S. Voutetakis, Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen. Renew. Sustain. Energy Rev. 134, 110118 (2020).

    Article  CAS  Google Scholar 

  3. K.K. Kar, Handbook of Nanocomposite Supercapacitor Materials II, Vol. 53 (Cham: Springer, 2020).

    Book  Google Scholar 

  4. A. Muzaffar, M.B. Ahamed, K. Deshmukh, and J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123 (2019).

    Article  CAS  Google Scholar 

  5. Y. Liu, F. Zhou, and V. Ozolins, Ab initio study of the charge-storage mechanisms in RuO2-based electrochemical ultracapacitors. J. Phys. Chem. C 116(1), 1450 (2012).

    Article  CAS  Google Scholar 

  6. Q.Z. Zhang, D. Zhang, Z.C. Miao, X.L. Zhang, and S.L. Chou, Research progress in MnO2-carbon based supercapacitor electrode materials. Small 14(24), 1702883 (2018).

    Article  Google Scholar 

  7. X. Hu, L. Wei, R. Chen, Q. Wu, and J. Li, Reviews and prospectives of Co3O4-based nanomaterials for supercapacitor application. Chem. Select 5(17), 5268 (2020).

    CAS  Google Scholar 

  8. N.M. Shinde, J.M. Yun, R.S. Mane, S. Mathur, and K.H. Kim, An overview of self-grown nanostructured electrode materials in electrochemical supercapacitors. J. Korean Ceram. Soc. 55(5), 407 (2018).

    Article  CAS  Google Scholar 

  9. M. Zeraati and K. Tahmasebi, Supercapacitor behavior of SiC coated copper hydroxide and copper sulfide nano-wires. J. Alloys Compd. 786, 798 (2019).

    Article  CAS  Google Scholar 

  10. A.H. Khaleghi, K. Tahmasebi, and A. Irannejad, Carbon and graphite coating on Cu (OH)2 nanowires as high-performance supercapacitor electrode. J. Korean Ceram. Soc. 59(1), 104 (2022).

    Article  CAS  Google Scholar 

  11. R. Barik and P.P. Ingole, Challenges and prospects of metal sulfide materials for supercapacitors. Curr. Opin. Electrochem. 21, 327 (2020).

    Article  CAS  Google Scholar 

  12. X. Wang, J. Hu, W. Liu, G. Wang, J. An, and J. Lian, Ni-Zn binary system hydroxide, oxide and sulfide materials: synthesis and high supercapacitor performance. J. Mater. Chem. A 3(46), 23333 (2015).

    Article  CAS  Google Scholar 

  13. P. Phonsuksawang, P. Khajondetchairit, K. Ngamchuea, T. Butburee, S. Sattayaporn, N. Chanlek, and T. Siritanon, Enhancing performance of NiCo2S4/Ni3S2 supercapacitor electrode by Mn doping. Electrochim. Acta 368, 137634 (2021).

    Article  CAS  Google Scholar 

  14. T. Wang, W. Ma, Y. Zhang, J. Guo, T. Li, S. Wang, and D.A. Yang, Construction of CoMoO4@Ni3S2 core–shell heterostructures nanorod arrays for high-performance supercapacitors. J. Energy Storage 35, 102319 (2021).

    Article  Google Scholar 

  15. S. Chen, S. Chandrasekaran, S. Cui, Z. Li, G. Deng, and L. Deng, Self-supported NiMoO4@CoMoO4 core/sheath nanowires on conductive substrates for all-solid-state asymmetric supercapacitors. J. Electroanal. Chem. 846, 113153 (2019).

    Article  CAS  Google Scholar 

  16. M. Zhang, W. Liu, R. Han, Z. Sun, J. Liu, and Y. Wu, Facile construction of 3D packing porous flower-like NiCo2O4@NiMoO4/rGO hybrids as high-performance supercapacitors with large areal capacitance. Energy Technol. 7(5), 1800940 (2019).

    Article  Google Scholar 

  17. R. Zou, K. Xu, T. Wang, G. He, Q. Liu, X. Liu, Z. Zhang, and J. Hu, Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. J. Mater. Chem. A 1(30), 8560 (2013).

    Article  CAS  Google Scholar 

  18. X. Liu, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang, and J. Tu, Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. ACS Appl. Mater. Interfaces 5(17), 8790 (2013).

    Article  CAS  Google Scholar 

  19. L. Li, S. Peng, Y. Cheah, P. The, J. Wang, G. Wee, Y. Ko, C. Wong, and M. Srinivasan, Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chem. A Euro J. 19(19), 5892 (2013).

    Article  CAS  Google Scholar 

  20. J. Wang, S. Wang, Z. Huang, and Y. Yu, High-performance NiCo2O4@Ni3S2 core/shell mesoporous nanothorn arrays on Ni foam for supercapacitors. J. Mater. Chem. A 2(41), 17595 (2014).

    Article  CAS  Google Scholar 

  21. T. Zhu, H.B. Wu, Y. Wang, R. Xu, and X.W. Lou, Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production. Adv. Energy Mater. 2(12), 1497 (2012).

    Article  CAS  Google Scholar 

  22. Z. Xing, Q. Chu, X. Ren, C. Ge, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, and X. Sun, Ni3S2 coated ZnO array for high-performance supercapacitors. J. Power Sources 245, 463 (2014).

    Article  CAS  Google Scholar 

  23. Q. Chu, W. Wang, X. Wang, B. Yang, X. Liu, and J. Chen, Hierarchical NiCo2O4@ nickel-sulfide nanoplate arrays for high-performance supercapacitors. J. Power Sources 276, 19 (2015).

    Article  CAS  Google Scholar 

  24. H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, H.Y. Wu, Z.Y. Zhang, and Y.Y. Yang, Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors. J. Mater. Chem. 21(28), 10504 (2011).

    Article  CAS  Google Scholar 

  25. S. Sun, G. Jiang, Y. Liu, B. Yu, and U. Evariste, Preparation of α-MnO2/Ag/RGO hybrid films for asymmetric supercapacitor. J. Energy Storage 18, 256 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Tahmasebi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shobeiri, M., Tahmasebi, K. & Hosseini, S.M.A. Urchin-Like NiCo2O4@Ni3S2 Core/Shell Nanostructure as Supercapacitor Electrode. J. Electron. Mater. 52, 6416–6424 (2023). https://doi.org/10.1007/s11664-023-10621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10621-5

Keywords

Navigation