Skip to main content
Log in

Giant Dielectric Response in MWCNT/Chitosan Composite Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, xMWCNT/chitosan composite films with multi-walled carbon nanotubes (MWCNT) as filler and chitosan as matrix were prepared via a solution blending method. Varied content of MWCNT of 0, 0.5 wt.%, 1 wt.% and 1.5 wt.% was investigated. The dielectric properties of the films were investigated in the temperature range of −60°C to 60°C and frequency range of 102–106 Hz. The experimental results show that the incorporation of MWCNT can effectively improve the dielectric properties of the film, with optimal results when the content of MWCNT is close to the percolation threshold. A giant dielectric constant (GDC) was found in all the samples and was studied by dielectric and impedance measurements. Maxwell Wagner relaxation was observed in all samples, which is caused by space charges at different interfaces. The GDC is thought to be related to a Maxwell–Wagner relaxation caused by sample–electrode contact. The addition of MWCNT can enhance the Maxwell–Wagner relaxation. The largest enhancement was found in the sample with 1 wt.% MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Date Availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. X.Y. Huang and P.K. Jiang, Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27(3), 546 (2015).

    Article  CAS  Google Scholar 

  2. B.P. Mandal, P. Anithakumari, S. Nigam, C. Majumder, M. Mohapatra, and A.K. Tyagi, Enhancement of dielectric constant in a niobium doped titania system: an experimental and theoretical study. New J. Chem. 40(11), 9526 (2016).

    Article  CAS  Google Scholar 

  3. P. Mandal and A. Sundaresan, Dielectric relaxation mechanism in high-pressure synthesized BiCr0.5Mn0.5O3. J. Electron. Mater. 50, 1615 (2021).

    Article  CAS  Google Scholar 

  4. F.A. Razmi, N. Ngadi, S. Wong, I.M. Inuwa, and L.A. Opotu, Kinetics, thermodynamics, isotherm and regeneration analysis of chitosan modified pandan adsorbent. J. Clean. Prod. 231, 98 (2019).

    Article  CAS  Google Scholar 

  5. L. Ren, J. Xu, Y. Zhang, J. Zhou, D. Chen, and Z. Chang, Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium. Int. J. Biol. Macromol. 135, 898 (2019).

    Article  CAS  Google Scholar 

  6. T. Fahmy, H. Elhendawi, W.B. Elsharkawy, and F.M. Reicha, AC conductivity and dielectric relaxation of chitosan/poly (vinyl alcohol) biopolymer polyblend. Bull. Mater. Sci. 43, 1 (2020).

    Article  Google Scholar 

  7. C.K. Pillai, W. Paul, and C.P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 34(7), 641 (2009).

    Article  CAS  Google Scholar 

  8. G.N. Shi, C.N. Zhang, R. Xu, J.F. Niu, H.J. Song, X.Y. Zhang, W.W. Wang, Y.M. Wang, C. Li, X.Q. Wei, and D.L. Kong, Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials 113, 191 (2017).

    Article  CAS  Google Scholar 

  9. R.M.C. Udayangani, S.H.S. Dananjaya, C. Nikapitiya, G.J. Heo, J. Lee, and M. De Zoysa, Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio) fed chitosan silver nanocomposites. Fish Shellfish Immunol. 66, 173 (2017).

    Article  CAS  Google Scholar 

  10. L. Wei, W. Tan, G. Wang, Q. Li, F. Dong, and Z. Guo, The antioxidant and antifungal activity of chitosan derivatives bearing Schiff bases and quaternary ammonium salts. Carbohydr. Polym. 226, 115256 (2019).

    Article  Google Scholar 

  11. C. Choi, S. Kim, P. Pak, D. Yoo, and Y. Chung, Effect of N-acylation on structure and properties of chitosan fibers. Carbohydr. Polym. 68(1), 122 (2007).

    Article  CAS  Google Scholar 

  12. A.M. Esawi and M.M. Farag, Carbon nanotube reinforced composites: potential and current challenges. Mater. Des. 28(9), 2394 (2007).

    Article  CAS  Google Scholar 

  13. L. Yang, J. Qiu, H. Ji, K. Zhu, and J. Wang, Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly (vinylidene fluoride) composites. Compos. Part A Appl. Sci. Manuf. 65, 125 (2014).

    Article  CAS  Google Scholar 

  14. Z.K. Ren, L.W. Liu, M.Y. Zhang, Y.J. Liu, and J.S. Leng, Dielectric and breakdown properties of MWCNT and OMMT-reinforced epoxy composites. J. Electron. Mater. 48, 7270 (2019).

    Article  CAS  Google Scholar 

  15. W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbi, and X. Sun, Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection. Analyst 138(2), 417 (2013).

    Article  CAS  Google Scholar 

  16. J. Zhu, J. Jiang, J. Liu, R. Ding, Y. Li, H. Ding, Y. Feng, G. Wei, and X. Huang, CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors. RSC Adv. 1(6), 1020 (2011).

    Article  CAS  Google Scholar 

  17. C.W. Tang, B. Li, L. Sun, B. Lively, and W.H. Zhong, The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites. Eur. Polym. J. 48(6), 1062 (2012).

    Article  CAS  Google Scholar 

  18. C. Pecharromán, F. Esteban-Betegón, J.F. Bartolomé, S. López-Esteban, and J.S. Moya, New percolative BaTiO3-Ni composites with a high and frequency-independent dielectric constant (εr ≈ 80000). Adv. Mater. 13, 1541 (2001).

    Article  Google Scholar 

  19. Z.Q. Liu and Z.P. Yang, High permittivity, low dielectric loss and impedance characteristics of Li0.5La0.5Cu3Ti4O12 ceramics by a sol–gel technique. J. Electron. Mater. 48, 5333 (2019).

    Article  CAS  Google Scholar 

  20. Z.G. He, Simultaneously high dielectric constant and breakdown strength in CaCu3Ti4O12-filled polymer composites. J. Electron. Mater. 51, 4521 (2022).

    Article  CAS  Google Scholar 

  21. K.R. Mahmoud, H.A. El-Hakim, and A. Abdelaziz, Design of compact double-layer microwave absorber for X-Ku bands using genetic algorithm. Prog. Electromagn. Res. B 65, 157 (2016).

    Article  Google Scholar 

  22. W. Wu, B. Han, H. Gao, Z. Liu, T. Jiang, and J. Huang, Desulfurization of flue gas: SO2 absorption by an ionic liquid. Angew. Chem. Int. Ed. 43(18), 2415 (2004).

    Article  CAS  Google Scholar 

  23. R. Mukherjee, R. Sharma, P. Saini, and S. De, Nanostructured polyaniline incorporated ultrafiltration membrane for desalination of brackish water. Environ. Sci. Water Res. Technol. 1(6), 893 (2015).

    Article  CAS  Google Scholar 

  24. L. Vodolazov, V. Shatalov, T. Molchanova, and V. Peganov, Polymerization of uranyl ions and its role in ion-exchange extraction of uranium. At. Energy 90(1), 213 (2001).

    Article  CAS  Google Scholar 

  25. J. Huang, A. Riisager, R.W. Berg, and R. Fehrmann, Tuning ionic liquids for high gas solubility and reversible gas sorption. J. Mol. Catal. A Chem. 279(2), 170 (2008).

    Article  CAS  Google Scholar 

  26. S. Li, Y. Gong, Y. Yang, C. He, L. Hu, L. Zhu, L. Sun, and D. Shu, Recyclable CNTs/Fe3O4 magnetic nanocomposites as adsorbents to remove bisphenol a from water and their regeneration. Chem. Eng. J. 260, 231 (2015).

    Article  CAS  Google Scholar 

  27. C.C. Wang, M.N. Zhang, and W. Xia, High-temperature dielectric relaxation in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. J. Am. Ceram. Soc. 96, 1521 (2013).

    Article  CAS  Google Scholar 

  28. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951).

    Article  CAS  Google Scholar 

  29. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, and H. Yang, Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci. Rep. 5, 13645 (2015).

    Article  CAS  Google Scholar 

  30. C.C. Wang, M. He, F. Yang, J. Wen, G.Z. Liu, and H.B. Lu, Enhanced tunability due to interfacial polarization in La0.7Sr0.3MnO3/BaTiO3 multilayers. Appl. Phys. Lett. 90, 192904 (2007).

    Article  Google Scholar 

  31. C.C. Wang, W. Ni, D. Zhang, X.H. Sun, J. Wang, H.B. Li, and N. Zhang, Dielectric properties of pure and Mn-doped CaCu3Ti4O12 ceramics over a wide temperature range. J. Electroceram. 36, 46 (2016).

    Article  Google Scholar 

  32. M.R. Díaz-Guillén, J.A. Díaz-Guillén, A.F. Fuentes, J. Santamaría, and C. León, Crossover to nearly constant loss in ac conductivity of highly disordered pyrochlore-type ionic conductors. Phys. Rev. B 82, 174304 (2010).

    Article  Google Scholar 

  33. M. Zhu, N. Zhang, H. Wang, Y.D. Li, S.G. Huang, Q.J. Li, Y. Yu, Y.M. Guo, X.L. Liu, and C.C. Wang, Point-defect-induced colossal dielectric behavior in GaAs single crystals. RSC Adv. 7(42), 26130 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 51872001 and 51572001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. Material preparation was performed by YW and YM. Data collection and analysis were performed by JH. The first draft of the manuscript was written by JH. The supervision of the whole work and revision of the manuscript were made by CW.

Corresponding author

Correspondence to Chunchang Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Approval

Human tissue experiment is not involved in this paper

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Wang, Y., Ma, Y. et al. Giant Dielectric Response in MWCNT/Chitosan Composite Films. J. Electron. Mater. 52, 6602–6612 (2023). https://doi.org/10.1007/s11664-023-10593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10593-6

Keywords

Navigation