Skip to main content

Advertisement

Log in

Simultaneously High Dielectric Constant and Breakdown Strength in CaCu3Ti4O12-Filled Polymer Composites

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Although adopting giant-permittivity ceramic fillers results in a high dielectric constant in polymer-based composite materials, high dielectric loss and low breakdown strength are easily triggered. In this study, the dielectric and breakdown characteristics were optimized by designing and preparing polymer/giant-permittivity ceramic/insulating ceramic ternary composite films. Copper calcium titanate (CCTO) and boron nitride (BN) were used as the giant-permittivity and highly insulating fillers, respectively. The ternary composite films exhibited improved overall electrical properties compared with the binary polymer/CCTO composite films. The synergistic effect between CCTO and BN fillers was found to be crucial. At 100 Hz, the optimal ternary composite film containing 40 wt.% CCTO filler and 3 wt.% BN filler exhibited a high dielectric constant of approximately 68 and low dielectric loss of approximately 0.19, and high electrical breakdown strength of approximately 175 MV m−1 under a direct-current electric field. This study may boost the large-scale fabrication of high-performance composite dielectric film materials for electrical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Bianco, F. Cascetta, and S. Nardini, Analysis of Technology Diffusion Policies for Renewable Energy: The Case of the Italian Solar Photovoltaic Sector. Sustain. Energy Technol. 46, 101250 (2021).

    Google Scholar 

  2. J. Hu, S. Zhang, and B. Tang, Rational Design of Nanomaterials for High Energy Density Dielectric Capacitors via Electrospinning. Energy Storage Mater. 37, 530 (2021).

    Article  Google Scholar 

  3. L. Sun, Z. Shi, B. He, H. Wang, S. Liu, M. Huang, J. Shi, D. Dastan, and H. Wang, Asymmetric Trilayer All-Polymer Dielectric Composites with Simultaneous High Efficiency and High Energy Density: A Novel Design Targeting for Advanced Energy Storage Capacitors. Adv. Funct. Mater. 31, 2100280 (2021).

    Article  CAS  Google Scholar 

  4. N. Jia, J. Cao, X. Tan, J. Dong, H. Liu, C. Tan, J. Xu, Q. Yan, X. Loh, and A. Suwardi, Thermoelectric Materials and Transport Physics. Mater. Today Phys. 21, 100519 (2021).

    Article  CAS  Google Scholar 

  5. V. Pavlović, D. Tošić, R. Dojčilović, D. Dudić, M. Dramićanin, M. Medić, M. McPherson, V. Pavlović, B. Vlahovic, and V. Djoković, PVDF-HFP/NKBT Composite Dielectrics: Perovskite Particles Induce the Appearance of an Additional Dielectric Relaxation Process in Ferroelectric Polymer Matrix. Polym. Test. 96, 107093 (2021).

    Article  Google Scholar 

  6. Y. Tang, H. Liu, X. Wang, S. Cheng, Z. Jin, T. Zhuang, S. Guan, and L. Li, Achieving Enhanced Dielectric Performance of Reduced Graphene Oxide/Polymer Composite by a Green Method with pH as a Stimulus. J. Mol. Struct. 1224, 129196 (2021).

    Article  CAS  Google Scholar 

  7. J. Hu, S. Zhang, and B. Tang, 2D Filler-Reinforced Polymer Nanocomposite Dielectrics for High-k Dielectric and Energy Storage Applications. Energy Storage Mater. 34, 260 (2021).

    Article  Google Scholar 

  8. J. Hu, S. Zhang, and B. Tang, Correction to: Three-Dimensionally Ordered Macroporous BaTiO3 Framework-Reinforced Polymer Composites with Improved Dielectric Properties. SN Appl. Sci. 3, 325 (2021).

    Article  Google Scholar 

  9. S. Udhay, Influence of Surface Modification of BaTiO3 Nanoparticles on the Dielectric Properties of BaTiO3/Epoxy Composite Films (Rutgers University Libraries, 2017) https://doi.org/10.7282/T33F4SSV. Accessed October 2017.

  10. J. Su, and J. Zhang, Remarkable Enhancement of Mechanical and Dielectric Properties of Flexible Ethylene Propylene Diene Monomer (EPDM)/barium titanate (BaTiO3) Dielectric Elastomer by Chemical Modification of Particles. RSC Adv. 5, 78448 (2015).

    Article  CAS  Google Scholar 

  11. D. Wang, M. Huang, J. Zha, J. Zhao, Z. Dang, and Z. Cheng, Dielectric Properties of Polystyrene Based Composites Filled with Core-Shell BaTiO3/Polystyrene Hybrid Nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 21, 1438 (2014).

    Article  CAS  Google Scholar 

  12. M. Rahman, A. Puthirath, A. Adumbumkulath, T. Tsafack, H. Robatjazi, M. Barnes, Z. Wang, S. Kommandur, S. Susarla, S. Sajadi, D. Salpekar, F. Yuan, G. Babu, K. Nomoto, S. Islam, R. Verduzco, S. Yee, H. Xing, and P. Ajayan, Fiber Reinforced Layered Dielectric Nanocomposite. Adv. Funct. Mater. 29, 1900056 (2019).

    Article  Google Scholar 

  13. C. Zhang, W. Wei, H. Sun, and Q. Zhu, Performance Enhancements in Poly(Vinylidene Fluoride)-Based Piezoelectric Films Prepared by the Extrusion-Casting Process. J. Mater. Sci.-Mater. Electron. 32, 21837 (2021).

    Article  CAS  Google Scholar 

  14. F. Liu, Q. Li, Z. Li, L. Dong, C. Xiong, and Q. Wang, Ternary PVDF-Based Terpolymer Nanocomposites with Enhanced Energy Density and High Power Density. Compos. Part A-Appl. Sci. Manuf. 109, 597 (2018).

    Article  CAS  Google Scholar 

  15. A. Singh, and Y. Singh, Dielectric Behavior of CaCu3Ti4O12: Poly Vinyl Chloride Ceramic Polymer Composites at Different Temperature and Frequencies. Mod. Electron. Mater. 2, 121 (2016).

    Article  Google Scholar 

  16. A. Labeeb, S. Ibrahim, A. Ward, and S. Abd-El-Messieh, Polymer/Liquid Crystal Nanocomposites for Energy Storage Applications. Polym. Eng. Sci. 60, 2529 (2020).

    Article  CAS  Google Scholar 

  17. S. Ding, S. Yu, Y. Shen, H. Liu, R. Sun, and C. Wong, in 17th International Conference On Electronic Packaging Technology (2016), p. 506.

  18. L. Singh, U. Rai, A. Rai, and K. Mandal, Sintering Effects on Dielectric Properties of Zn-Doped CaCu3Ti4O12 Ceramic Synthesized by Modified Sol-Gel Route. Electron. Mater. Lett. 9, 107 (2013).

    Article  CAS  Google Scholar 

  19. L. Song, H. Jia, H. Zhang, and J. Cao, Graphene-Like h-BN/CdS 2D/3D Heterostructure Composite as an Efficient Photocatalyst for Rapid Removing Rhodamine B and Cr(VI) in Water. Ceram. Int. 46, 24674 (2020).

    Article  CAS  Google Scholar 

  20. Y. Xu, S. Qi, and W. Mi, Electronic Structure and Magnetic Properties of Two-Dimensional h-BN/Janus 2H-VSeX (X = S, Te) van der Waals Heterostructures. Appl. Surf. Sci. 537, 147898 (2021).

    Article  CAS  Google Scholar 

  21. S. Song, Y. Wang, Y. Luo, D. He, A. Abella, and Y. Deng, One-dimensional Oriented Microcapacitors in Ternary Polymer Nanocomposites: Toward High Breakdown Strength and Suppressed Loss. Mater. Design 140, 114 (2018).

    Article  CAS  Google Scholar 

  22. L. Zhu, Exploring Strategies for High Dielectric Constant and Low Loss Polymer Dielectrics. J. Phys. Chem. Lett. 5, 3677 (2014).

    Article  CAS  Google Scholar 

  23. L. Singh, I. Kim, W. Woo, B. Sin, H. Lee, and Y. Lee, A Novel Low Cost Non-aqueous Chemical Route for Giant Dielectric Constant CaCu3Ti4O12 Ceramic. Solid State Sci. 43, 35 (2015).

    Article  CAS  Google Scholar 

  24. Z. Li, B. Xu, J. Han, J. Huang, and K. Chung, Interfacial Polarization and Dual Charge Transfer Induced High Permittivity of Carbon Dots-Based Composite as Humidity-Resistant Tribomaterial for Efficient Biomechanical Energy Harvesting. Adv. Energy Mater. 11, 2101294 (2021).

    Article  CAS  Google Scholar 

  25. L. Zhou, Q. Fu, F. Xue, X. Tang, D. Zhou, Y. Tian, G. Wang, C. Wang, H. Gou, and L. Xu, Multiple Interfacial Fe3O4@BaTiO3/P(VDF-HFP) Core–Shell–Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density. ACS Appl. Mater. Interfaces 9, 40792 (2017).

    Article  CAS  Google Scholar 

  26. D. Zhao, Y. Zhang, H. Gong, B. Zhu, and X. Zhang, BN Nanoparticles/Si3N4 Wave-Transparent Composites with High Strength and Low Dielectric Constant. J. Nanomater. 2011, 246847 (2011).

    Google Scholar 

  27. W. Ma, K. Yang, H. Wang, and H. Li, Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)-MXene Nanosheet Composites for Microcapacitors. ACS Appl. Nano mater. 3, 7992 (2020).

    Article  CAS  Google Scholar 

  28. J. Jumpatam, P. Thongbai, B. Kongsook, T. Yamwong, and S. Maensiri, High Permittivity, Low Dielectric Loss, and High Electrostatic Potential Barrier in Ca2Cu2Ti4O12 Ceramics. Mater. Lett. 76, 40 (2012).

    Article  CAS  Google Scholar 

  29. T. Heid, M. Fréchette, and E. David, Epoxy/BN Micro- and Submicro-Composites: Dielectric and Thermal Properties of Enhanced Materials for High Voltage Insulation Systems. IEEE Trans. Dielectr. Electr. Insul. 22, 1176 (2015).

    Article  CAS  Google Scholar 

  30. X. Wang, A. Pakdel, J. Zhang, Q. Weng, T. Zhai, C. Zhi, D. Golberg, and Y. Bando, Large-Surface-Area BN Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Dielectric Properties. Nanoscale Res. Lett. 7, 662 (2012).

    Article  Google Scholar 

  31. T. Liu, Q. Li, G. Dong, M. Asif, X. Huang, and Z. Wang, Multi-factor Model for Lifetime Prediction of Polymers used as Insulation Material in High Frequency Electrical Equipment. Polym. Test. 73, 193 (2019).

    Article  CAS  Google Scholar 

  32. S. Ishaq, F. Kanwal, S. Atiq, M. Moussa, U. Azhar, and D. Losic, Dielectric Properties of Graphene/titania/polyvinylidene Fluoride (G/TiO2/PVDF) Nanocomposites. Materials 13, 205 (2020).

    Article  CAS  Google Scholar 

  33. Y. Hao, Q. Li, X. Pang, B. Gong, C. Wei, and J. Ren, Synergistic Enhanced Thermal Conductivity and Dielectric Constant of Epoxy Composites with Mesoporous Silica Coated Carbon Nanotube and Boron Nitride Nanosheet. Materials 14, 5251 (2021).

    Article  CAS  Google Scholar 

  34. C. Liu, W. Lee, and J. Su, Pentacene-Based Thin Film Transistor with Inkjet-Printed Nanocomposite High-k Dielectrics. Act. Passiv. Electron. 2012, 921738 (2012).

    Google Scholar 

  35. H. Zhu, H. Wang, J. Liu, W. Wang, R. Gao, and Y. Zhang, Application of Terahertz Dielectric Constant Spectroscopy for Discrimination of Oxidized Coal and Unoxidized Coal by Machine Learning Algorithms. Fuel 293, 120470 (2021).

    Article  CAS  Google Scholar 

  36. D. Shauyenova, S. Jung, H. Yang, H. Yim, and H. Ju, Electrical and Optical Properties of Co75Si15B10 Metallic Glass Nanometric Thin Films. Materials 14, 162 (2021).

    Article  CAS  Google Scholar 

  37. A. Pawlik, T. Kämpfe, A. Haußmann, T. Woike, U. Treske, M. Knupfer, B. Büchner, E. Soergel, R. Streubel, A. Koitzsch, and L. Eng, Polarization Driven Conductance Variations at Charged Ferroelectric Domain Walls. Nanoscale 9, 10933 (2017).

    Article  CAS  Google Scholar 

  38. T. Wang, G. Zhang, B. Zhang, S. Liu, D. Li, and C. Liu, Oriented Boron Nitride Nanosheet Films for Thermal Management and Electrical Insulation in Electrical and Electronic Equipment. ACS Appl. Nano Mater. 4, 4153 (2021).

    Article  CAS  Google Scholar 

  39. M. Iwamoto, T. Manaka, T. Yamamoto, and E. Lim, Probing Motion of Electric Dipoles and Carriers in Organic Monolayers by Maxwell Displacement Current and Optical Second Harmonic Generation. Thin Solid Films 517, 1312 (2008).

    Article  CAS  Google Scholar 

  40. Z. Meng, T. Zhang, Q. Chi, C. Zhang, C. Tang, H. Li, and Q. Lei, Electrical, Mechanical and Thermal Properties of ZnO/SiR Composite Dielectric. J. Mater. Sci.-Mater. El. 32, 17253 (2021).

    Article  CAS  Google Scholar 

  41. L. Yang, L. Yang, K. Ma, Y. Wang, T. Song, L. Gong, J. Sun, L. Zhao, Z. Yang, J. Xu, Q. Wang, G. Li, and W. Zhou, Free Volume Dependence of Dielectric Behaviour in Sandwich-Structured High Dielectric Performances of Poly(Vinylidene Fluoride) Composite Films. Nanoscale 13, 300 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 200 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z. Simultaneously High Dielectric Constant and Breakdown Strength in CaCu3Ti4O12-Filled Polymer Composites. J. Electron. Mater. 51, 4521–4528 (2022). https://doi.org/10.1007/s11664-022-09708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09708-2

Keywords

Navigation