Skip to main content
Log in

High Permittivity, Low Dielectric Loss and Impedance Characteristics of Li0.5La0.5Cu3Ti4O12 Ceramics by a Sol–Gel Technique

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Li-doped La2/3Cu3Ti4O12 ceramics and the Li0.5La0.5Cu3Ti4O12 ceramic samples were prepared by the sol–gel technique. The influence of sintering conditions on structures and dielectric properties of Li0.5La0.5Cu3Ti4O12 ceramic samples were systematically researched. The results indicated that the Li0.5La0.5Cu3Ti4O12 ceramic samples sintered at 1070°C for 10 h exhibited low porosity structure, larger grain sizes (ca 8 μm and 4 μm) with bimodal distribution, higher permittivity (ca 0.70–1.0 × 104), especially lower dielectric loss (ca 0.030) and better stability of frequency and temperature. The internal barrier layer capacitor effect could well explain the giant permittivity phenomenon of the Li0.5La0.5Cu3Ti4O12 ceramics. Additionally, the grain boundary conduction of the Li0.5La0.5Cu3Ti4O12 ceramic samples displayed two different characteristics, thus two kinds of conductivity activation energy values were obtained in the grain boundary. Simultaneously, it was found that the temperature among 190–230°C seemed to be an important temperature region. The permittivity, dielectric loss and conductivity characteristics in the critical temperature region of 190–230°C showed abnormal change. It was concluded that in the critical temperature region, the oxygen vacancy forms, concentration and extra electrons concentration might vary significantly. The second-ionized oxygen vacancies (\( V_{\rm{O}}^{ \cdot \cdot } \)) might play a dominating role below about 190°C for the electrical properties of ceramic samples, while the first-ionized oxygen vacancies (\( V_{\rm{O}}^{ \cdot } \)) might be principal above about 230°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.J. Cheng, Z.W. Li, and J.G. Wu, J. Mater. Chem. A 3, 5805 (2015).

    Article  Google Scholar 

  2. Z.W. Li, J.G. Wu, D.Q. Xiao, and J.G. Zhu, Acta Mater. 103, 243 (2016).

    Article  Google Scholar 

  3. Z.W. Li, X. Luo, W.J. Wu, and J.G. Wu, J. Am. Ceram. Soc. 100, 3004 (2017).

    Article  Google Scholar 

  4. C.L. Zhao and J.G. Wu, ACS Appl. Mater. Interfaces 10, 3680 (2018).

    Article  Google Scholar 

  5. X.H. Zhu, L.H. Yang, J.L. Li, L. Jin, and F. Li, Ceram. Int. 43, 640 (2017).

    Google Scholar 

  6. J.L. Li, F. Li, X.H. Zhu, D.B. Lin, and Z. Xu, J. Alloys Compd. 692, 375 (2017).

    Article  Google Scholar 

  7. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, and A.W. Sleight, J. Solid State Chem. 151, 323 (2000).

    Article  Google Scholar 

  8. P.B. Shri and K.B.R. Varma, Phys. B 403, 2246 (2008).

    Article  Google Scholar 

  9. Y.Q. Tana, J.L. Zhanga, W.T. Haoa, and G. Chena, Mater. Chem. Phys. 124, 1100 (2010).

    Article  Google Scholar 

  10. P.F. Liang, Z.P. Yang, X.L. Chao, and Z.H. Liu, J. Am. Ceram. Soc. 95, 2218 (2012).

    Article  Google Scholar 

  11. H.M. Ren, P.F. Liang, and Z.P. Yang, Mater. Res. Bull. 45, 1608 (2010).

    Article  Google Scholar 

  12. P. Thongbai, T. Yamwong, and S. Maensiri, Mater. Res. Bull. 47, 432 (2012).

    Article  Google Scholar 

  13. X. Wang, P.F. Liang, Z.H. Peng, H. Peng, and Z.P. Yang, J. Alloys Compd. 778, 391 (2019).

    Article  Google Scholar 

  14. Z.Q. Liu and Z.P. Yang, J. Mater. Sci. Mater. Electron. 46, 6175 (2017).

    Article  Google Scholar 

  15. L.H. Yang, X.L. Chao, Z. Yang, N. Zhao, L.L. Wei, and Z.P. Yang, Ceram. Int. 42, 2526 (2016).

    Article  Google Scholar 

  16. J.J. Liu, R.W. Smith, and W.N. Mei, Chem. Mater. 19, 6020 (2007).

    Article  Google Scholar 

  17. D.L. Sun, A.Y. Wu, and S.T. Yiny, J. Am. Ceram. Soc. 91, 169 (2008).

    Article  Google Scholar 

  18. Z.Q. Liu, X.L. Chao, and Z.P. Yang, J. Mater. Sci. Mater. Electron. 27, 8980 (2014).

    Article  Google Scholar 

  19. Z.Q. Liu, X.L. Chao, and Z.P. Yang, J. Am. Ceram. Soc. 97, 2154 (2014).

    Article  Google Scholar 

  20. B. Xu, J. Zhang, and Z.M. Tian, Mater. Lett. 75, 87 (2012).

    Article  Google Scholar 

  21. B.A. Bender and M.J. Pan, Mater. Sci. Eng. B 117, 339 (2005).

    Article  Google Scholar 

  22. P. Zheng, J.L. Zhang, S.F. Shao, Y.Q. Tan, and C.L. Wang, Appl. Phys. Lett. 94, 032902 (2009).

    Article  Google Scholar 

  23. Q.L. Zhang, T. Li, Z.P. Chen, R.Z. Xue, and Y.Q. Wang, Mater. Sci. Eng. B 177, 168 (2012).

    Article  Google Scholar 

  24. W.T. Hao, J.L. Zhang, Y.Q. Tan, and W.B. Su, J. Am. Ceram. Soc. 92, 2937 (2009).

    Article  Google Scholar 

  25. W.T. Hao, J.L. Zhang, Y.Q. Tan, M.L. Zhao, and C.L. Wang, J. Am. Ceram. Soc. 94, 1067 (2011).

    Article  Google Scholar 

  26. S.M. Moussa and B.J. Kennedy, Mater. Res. Bull. 36, 2525 (2001).

    Article  Google Scholar 

  27. Y.H. Lin, J.N. Cai, M. Li, C.W. Nan, and J.L. He, J. Appl. Phys. 103, 074111 (2008).

    Article  Google Scholar 

  28. M.A. Siddiqui, V.S. Chandel, and A. Azam, Appl. Surf. Sci. 258, 7354 (2012).

    Article  Google Scholar 

  29. W.Z. Yang, C.L. Song, and X.Q. Liu, J. Electron. Mater. 43, 1645 (2014).

    Article  Google Scholar 

  30. H. Hong and D.Y. Kjm, J. Am. Ceram. Soc. 90, 2118 (2007).

    Article  Google Scholar 

  31. H.Y. Zhu and X.M. Chen, J. Mater. Sci. 46, 6339 (2011).

    Article  Google Scholar 

  32. L. Zhang and Z.J. Tang, Phys. Rev. B 70, 17436 (2004).

    Google Scholar 

  33. C.K. Suman, K. Prasad, and R.N.P. Choudhary, Mater. Chem. Phys. 97, 425 (2006).

    Article  Google Scholar 

  34. T.Y. Li, H.Q. Fan, C.B. Long, and G.Z. Dong, J. Alloys Compd. 609, 60 (2014).

    Article  Google Scholar 

  35. Z.Q. Liu, X.L. Chao, and Z.P. Yang, Mate. Res. Bull. 48, 4877 (2013).

    Article  Google Scholar 

  36. J.G. Wu and J. Wang, J. Am. Ceram. Soc. 93, 2795 (2010).

    Article  Google Scholar 

  37. P.F. Liang, X.L. Chao, F. Wang, Z.Q. Liu, and Z.P. Yang, J. Am. Ceram. Soc. 96, 3883 (2013).

    Article  Google Scholar 

  38. J.G. Wu, J. Wang, D.Q. Xiao, and J.G. Zhu, J. Appl. Phys. 110, 064104 (2011).

    Article  Google Scholar 

  39. J.Y. Li, X.T. Zhao, and F. Gu, Appl. Phys. Lett. 100, 202905 (2012).

    Article  Google Scholar 

  40. F. Moura, A.Z. Simoes, and R.C. Deus, Ceram. Int. 39, 3499 (2013).

    Article  Google Scholar 

  41. J.K. Gill, O.P. Pandey, and K. Singh, Solid State Sci. 13, 1960 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No. 51172136), the Science Foundation of Shaanxi Province (No. 2017JM2037), the Scientific Research Funds of Shaanxi Provincial Education Department (17JK0277) and the Scientific Research Funds of Weinan Normal University (Nos. 18ZRRC16, 2018JYKX013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanqing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yang, Z. High Permittivity, Low Dielectric Loss and Impedance Characteristics of Li0.5La0.5Cu3Ti4O12 Ceramics by a Sol–Gel Technique. J. Electron. Mater. 48, 5333–5341 (2019). https://doi.org/10.1007/s11664-019-07344-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07344-x

Keywords

Navigation