Skip to main content
Log in

Tracing of Ammonia Gas by Solution-Combustion-Derived Pristine and Nb-Doped TiO2 Films: Beneficial Impact of Crystallinity and Adsorbed Oxygen on the Gas Response

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The current work delivers room-temperature ammonia (NH3) gas-detectable pristine, Nb-doped TiO2 air- and vacuum-annealed films obtained through the solution-combustion process. Polycrystalline anatase crystal structured films without any dopant oxide phases were processed at 400°C on glass substrates. The crystallinity was higher in pristine films than in doped films; the morphological features were similar in all the films. The films were > 50% transparent, and the estimated optical energy band gap was greater in doped films than in pristine films. All the films detected NH3 gas (25 ppm to 100 ppm) at room temperature, and the gas response was highly dependent on the crystallinity and relative area fraction of adsorbed oxygen (% of OA). The vacuum-annealed pristine film exhibited a better gas response than the other films at all NH3 gas concentrations due to high crystallinity and % of OA (10.15%). The film demonstrated maximum gas response of ~16 towards 100 ppm of NH3 gas and displayed good selectivity. Even though the doping reduced the crystallite size from ~17 nm to ~9 nm, it also diminished the crystallinity of the films, which significantly impacted the deterioration of their gas response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, and T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy 79, 1 (2021).

    Article  Google Scholar 

  2. D. Kwak, Y. Lei, and R. Maric, Ammonia gas sensors: a comprehensive review. Talanta 204, 713 (2019).

    Article  CAS  Google Scholar 

  3. V.E. Bochenkov and G.B. Sergeev, Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. Met. Oxide Nanostruct. Appl. 3, 31 (2010).

    CAS  Google Scholar 

  4. G.F. Fine, L.M. Cavanagh, A. Afonja, and R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors. 10, 5469 (2010).

    Article  CAS  Google Scholar 

  5. G. Manjunath, P. Nagaraju, and S. Mandal, A comparative study on enhancer and inhibitor of glycine–nitrate combustion ZnO screen-printed sensor: detection of low concentration ammonia at room temperature. J. Mater. Sci. Mater. Electron. 31, 10366 (2020).

    Article  CAS  Google Scholar 

  6. A. Ramesh, D.S. Gavaskar, P. Nagaraju, S. Duvvuri, S.R.K. Vanjari, and C. Subrahmanyam, Mn-doped ZnO microspheres prepared by solution combustion synthesis for room temperature NH3 sensing. Appl. Surf. Sci. Adv. 12, 100349 (2022).

    Article  Google Scholar 

  7. G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B. 139, 1 (2007).

    Article  CAS  Google Scholar 

  8. H.G. Moon, Y.S. Shim, D.H. Kim, H.Y. Jeong, M. Jeong, J.Y. Jung, S.M. Han, J.K. Kim, J.S. Kim, H.H. Park, J.H. Lee, H.L. Tuller, S.J. Yoon, and H.W. Jang, Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors. Sci. Rep. 2, 1 (2012).

    Article  Google Scholar 

  9. G. Eranna, B.C. Joshi, D.P. Runthala, and R.P. Gupta, Oxide materials for development of integrated gas sensors: a comprehensive review. Crit. Re. Solid State Mater. Sci. 29, 111 (2004).

    Article  CAS  Google Scholar 

  10. X. Tian, X. Cui, T. Lai, J. Ren, Z. Yang, M. Xiao, B. Wang, X. Xiao, and Y. Wang, Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: a review. Nano Mater. Sci. 3, 390 (2021).

    Article  CAS  Google Scholar 

  11. S. Singh, H. Kaur, V.N. Singh, K. Jain, and T.D. Senguttuvan, Highly sensitive and pulse-like response toward ethanol of Nb doped TiO2 nanorods based gas sensors. Sens. Actuators B. Chem. 171–172, 899 (2012).

    Article  Google Scholar 

  12. V. Nechita, J. Schoonman, and V. Musat, Ethanol and methanol sensing characteristics of Nb-doped TiO2 porous thin films. Phys. Status solidi. 209, 153 (2012).

    Article  CAS  Google Scholar 

  13. V. Galstyan, E. Comini, G. Faglia, A. Vomiero, L. Borgese, E. Bontempi, and G. Sberveglieri, Fabrication and investigation of gas sensing properties of Nb-doped TiO2 nanotubular arrays. Nanotechnology 23, 235706 (2012).

    Article  Google Scholar 

  14. S. Phanichphant, C. Liewhiran, K. Wetchakun, A. Wisitsoraat, and A. Tuantranont, Flame-made Nb-doped TiO2 ethanol and acetone sensors. Sensors. 11, 472 (2011).

    Article  CAS  Google Scholar 

  15. N.A. Dahoudi, Low temperature gas sensing coatings made through wet chemical deposition of niobium doped titanium oxide colloid. Mater. Sci. Appl. 02, 265 (2011).

    Google Scholar 

  16. M.C. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli, G. Martinelli, M.C. Casale, and M. Notaro, Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring. Sens. Actuators. B. Chem. 58, 310 (1999).

    Article  CAS  Google Scholar 

  17. L. Gan, C. Wu, Y. Tan, B. Chi, J. Pu, and L. Jian, Oxygen sensing performance of Nb-doped TiO2 thin film with porous structure. J. Alloys. Compd. 585, 729 (2014).

    Article  CAS  Google Scholar 

  18. R.K. Sharma, M.C. Bhatnagar, and G.L. Sharma, Mechanism in Nb doped titania oxygen gas sensor. Sens. Actuators B. Chem. 46, 194 (1998).

    Article  CAS  Google Scholar 

  19. Y. Yamada, Y. Seno, Y. Masuoka, T. Nakamura, and K. Yamashita, NO2 sensing characteristics of Nb doped TiO2 thin films and their electronic properties. Sens. Actuators. B. Chem. 66, 164 (2000).

    Article  CAS  Google Scholar 

  20. W. Wen and J.M. Wu, Nanomaterials via solution combustion synthesis: a step nearer to controllability. RSC Adv. 4, 58090 (2014).

    Article  CAS  Google Scholar 

  21. M.G. Kim, M.G. Kanatzidis, A. Facchetti, and T.J. Marks, Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10(5), 382 (2011).

    Article  CAS  Google Scholar 

  22. E. Carlos, R. Martins, E. Fortunato, and R. Branquinho, Solution combustion synthesis: towards a sustainable approach for metal oxides. Che. Eur. J. 26, 9099 (2020).

    Article  CAS  Google Scholar 

  23. G. Manjunath, P. Nagaraju, and S. Mandal, Ultra-sensitive clogging free combustible molecular precursor-based screen-printed ZnO sensors: a detection of ammonia and formaldehyde breath markers. J. Mater. Sci. Mater. Electron. 32, 5713 (2021).

    Article  CAS  Google Scholar 

  24. R.V. Vardhan, G. Manjunath, P. Nagaraju, and S. Mandal, Ammonia gas detection by solution combustion-processed pristine & Ti-doped ZnO transparent films: a reverse effect of doping on gas response. J. Mater. Sci. Mater. Electron. 34, 986 (2023).

    Article  CAS  Google Scholar 

  25. C. Wang, J. Meinhardt, and P. Löbmann, Growth mechanism of Nb-doped TiO2 sol-gel multilayer films characterized by SEM and focus/defocus TEM. J. Solgel. Sci. Technol. 53, 148 (2010).

    Article  CAS  Google Scholar 

  26. L. Zhao, X. Zhao, J. Liu, A. Zhang, D. Wang, and B. Wei, Fabrications of Nb-doped TiO2 (TNO) transparent conductive oxide polycrystalline films on glass substrates by sol-gel method. J. Solgel. Sci. Technol. 53, 475 (2010).

    Article  CAS  Google Scholar 

  27. K.C. Ok, J. Park, J.H. Lee, B. du Ahn, J.H. Lee, K.B. Chung, and J.S. Park, Semiconducting behavior of niobium-doped titanium oxide in the amorphous state. Appl. Phys. Lett. 100, 2012 (2012).

    Article  Google Scholar 

  28. M. Fallah, M.R. Zamani-Meymian, R. Rahimi, and M. Rabbani, Effect of annealing treatment on electrical and optical properties of Nb doped TiO2 thin films as a TCO prepared by sol-gel spin coating method. Appl. Surf. Sci. 316, 456 (2014).

    Article  CAS  Google Scholar 

  29. B.K. Kaleji, R. Sarraf-Mamoory, and A. Fujishima, Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO2 thin films. Mater. Chem. Phys. 132, 210 (2012).

    Article  CAS  Google Scholar 

  30. M. Regragui, M. Addou, A. Outzourhit, J.C. Bernéde, E.E. Idrissi, E. Benseddik, and A. Kachouane, Preparation and characterization of pyrolytic spray deposited electrochromic tungsten trioxide films. Thin Solid Films 358, 40 (2000).

    Article  CAS  Google Scholar 

  31. W. Wu, L. Zhang, X. Zhai, C. Liang, and K. Yu, Preparation and photocatalytic activity analysis of nanometer TiO2 modified by surfactant. Nanomater. Nanotechnol. 8, 1 (2018).

    Article  Google Scholar 

  32. N. Joshi, L.F. da Silva, F.M. Shimizu, V.R. Mastelaro, J.C. M’Peko, L. Lin, and O.N. Oliveira, UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature. Microchim. Acta. 186, 1 (2019).

    Article  CAS  Google Scholar 

  33. M.K. Lee, C.M. Shih, S.C. Fang, H.F. Tu, and C.L. Ho, Preparation of niobium-doped titanium oxide film by liquid phase deposition. Jpn. J. Appl. Phys. 46, 1653 (2007).

    Article  CAS  Google Scholar 

  34. A.V. Manole, M. Dobromir, M. Gîrtan, R. Mallet, G. Rusu, and D. Luca, Optical properties of Nb-doped TiO2 thin films prepared by sol-gel method. Ceram. Int. 39, 4771 (2013).

    Article  CAS  Google Scholar 

  35. G. Manjunath, R.V. Vardhan, L.L. Praveen, P. Nagaraju, and S. Mandal, Room-temperature detection of ammonia and formaldehyde gases by LaxBa1−xSnO3−δ (x = 0 and 0.05) screen printed sensors: effect of ceria and ruthenate sensitization. Appl. Phys. A. Mater. Sci. Process. 127, 1 (2021).

    Article  Google Scholar 

  36. V. Shelke, M.P. Bhole, and D.S. Patil, Effect of open air annealing on spin coated aluminum doped ZnO nanostructure. Mater. Chem. Phys. 141, 81 (2013).

    Article  CAS  Google Scholar 

  37. I.K. Er, A.O. Çağırtekin, A. Ajjaq, M.A. Yıldırım, A. Ateş, and S. Acar, Complex electrical impedance and modulus characterizations of ZnO: Sn thin films in a wide temperature range. J. Mater. Sci. Mater. Electron. 32, 13594 (2021).

    Article  CAS  Google Scholar 

  38. G. Korotcenkov and B.K. Cho, Thin film SnO2-based gas sensors: film thickness influence. Sens. Actuators B. Chem. 142, 321 (2009).

    Article  CAS  Google Scholar 

  39. K. Shingange, Z.P. Tshabalala, O.M. Ntwaeaborwa, D.E. Motaung, and G.H. Mhlongo, Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method. J. Colloid Interface Sci. 479, 127 (2016).

    Article  CAS  Google Scholar 

  40. V.R. Shinde, T.P. Gujar, and C.D. Lokhande, Enhanced response of porous ZnO nanobeads towards LPG: effect of Pd sensitization. Sens. Actuators B. Chem. 123, 701 (2007).

    Article  CAS  Google Scholar 

  41. R.S. Ganesh, M. Navaneethan, G.K. Mani, S. Ponnusamy, K. Tsuchiya, C. Muthamizhchelvan, S. Kawasaki, and Y. Hayakawa, Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods. J. Alloys Compd. 698, 555 (2017).

    Article  Google Scholar 

  42. R. Pandeeswari and B.G. Jeyaprakash, High sensing response of β-Ga2O3 thin film towards ammonia vapours: influencing factors at room temperature. Sens. Actuators B. Chem. 195, 206 (2014).

    Article  CAS  Google Scholar 

  43. M. Poloju, N. Jayababu, and M.V.R. Reddy, Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater. Sci. Eng. B. 227, 61 (2018).

    Article  CAS  Google Scholar 

  44. L. Zhu and W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators A. Phys. 267, 242 (2017).

    Article  CAS  Google Scholar 

  45. S.W. Choi, J.Y. Park, and S.S. Kim, Dependence of gas sensing properties in ZnO nanofibers on size and crystallinity of nanograins. J. Mater. Res. 26, 1662 (2011).

    Article  CAS  Google Scholar 

  46. Z.M. Seeley, A. Bandyopadhyay, and S. Bose, Influence of crystallinity on CO gas sensing for TiO2 films. Mater. Sci. Eng. B. 164, 38 (2009).

    Article  CAS  Google Scholar 

  47. A. Katoch, G.J. Sun, S.W. Choi, J.H. Byun, and S.S. Kim, Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens. Actuators B. Chem. 185, 411 (2013).

    Article  CAS  Google Scholar 

  48. V.G. Krishnan, P. Elango, and V. Ganesan, Surface characterization and gas sensing performance of yttrium doped TiO2 nanofilms prepared by automated nebulizer spray pyrolysis (ANSP). J. Mater. Sci. Mater. Electron. 29, 392 (2018).

    Article  Google Scholar 

  49. S.G. Pawar, S.L. Patil, M.A. Chougule, B.T. Raut, P.R. Godase, R.N. Mulik, S. Sen, and V.B. Patil, New method for fabrication of CSA doped PANi-TiO2 thin-film ammonia sensor. IEEE Sens. J. 11, 2980 (2011).

    Article  CAS  Google Scholar 

  50. V.G. Krishnan, N. Ravikumar, R. Dilip, and P. Elango, Gas sensing nature and characterization of Zr doped TiO2 films prepared by automated nebulizer spray pyrolysis technique. Optik 206, 1 (2020).

    Google Scholar 

  51. N. Mintcheva, P. Srinivasan, J.B.B. Rayappan, A.A. Kuchmizhak, S. Gurbatov, and S.A. Kulinich, Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanoparticles. Appl. Surf. Sci. 507, 1 (2020).

    Article  Google Scholar 

  52. X. Yang, H. Fu, L. Zhang, X. An, S. Xiong, X. Jiang, and A. Yu, Enhanced gas sensing performance based on the fabrication of polycrystalline Ag@TiO2 core-shell nanowires. Sens. Actuators B. Chem. 286, 483 (2019).

    Article  CAS  Google Scholar 

  53. H. Liu, W. Shen, and X. Chen, A room temperature operated ammonia gas sensor based on Ag-decorated TiO2 quantum dot clusters. RSC Adv. 9, 24519 (2019).

    Article  CAS  Google Scholar 

  54. Y. Zhou, Q. Ding, J. Li, Q. Yang, T. Wu, W. Zhu, X. OuYang, L. Liu, and Y. Wang, TiO2/InVO4 nn heterojunctions for efficient ammonia gas detection and their sensing mechanisms. J. Mater. Sci. 54, 13660 (2019).

    Article  CAS  Google Scholar 

  55. A. Kumar, A. Sanger, A. Kumar, and R. Chandra, Fast response ammonia sensors based on TiO2 and NiO nanostructured bilayer thin films. RSC Adv. 6, 77636 (2016).

    Article  CAS  Google Scholar 

  56. C. Zhu, X. Cheng, X. Dong, and Y.M. Xu, Enhanced sub-ppm NH3 gas sensing performance of PANI/TiO2 nanocomposites at room temperature. Front. Chem 6, 1 (2018).

    Article  Google Scholar 

  57. H. Liu, W. Shen, X. Chen, and J. Corriou, A high-performance NH3 gas sensor based on TiO2 quantum dot clusters with ppb level detection limit at room temperature. J. Mater. Sci. Mater. Electron. 29, 18380 (2018).

    Article  CAS  Google Scholar 

  58. H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, and Z. Ying, Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sens. Actuators B. 129, 319 (2008).

    Article  CAS  Google Scholar 

  59. Z. Ye, H. Tai, T. Xie, Y. Su, Z. Yuan, C. Liu, and Y. Jiang, A facile method to develop novel TiO2/rGO layered film sensor for detecting ammonia at room temperature. Mater. Lett. 165, 127 (2016).

    Article  CAS  Google Scholar 

  60. F. Pan, H. Lin, H. Zhai, Z. Miao, Y. Zhang, K. Xu, B. Guan, H. Huang, and H. Zhang, Pd-doped TiO2 film sensors prepared by premixed stagnation flames for CO and NH3 gas sensing. Sens. Actuators B. Chem. 261, 451 (2018).

    Article  CAS  Google Scholar 

  61. V.G. Krishnan, P. Elango, K. Ravikumar, R. Marnadu, O.M. Aldossary, and M. Ubaidullah, Noticeable improvement in the toxic gas-sensing activity of the Zn-doped TiO2 films for sensing devices. New J. Chem. 45, 10488 (2021).

    Article  CAS  Google Scholar 

  62. P. Chaudhari and S. Mishra, Effect of CuO as a dopant in TiO2 on ammonia and hydrogen sulphide sensing at room temperature. Measurement 90, 468 (2016).

    Article  Google Scholar 

  63. H. Fu, X. Yang, X. An, W. Fan, X. Jiang, and A. Yu, Experimental and theoretical studies of V2O5@TiO2 core-shell hybrid composites with high gas sensing performance towards ammonia. Sens. Actuators B. Chem. 252, 103 (2017).

    Article  CAS  Google Scholar 

  64. S.S. Rane, D.A. Kajale, S.S. Arbuj, S.B. Rane, and S.W. Gosavi, Hydrogen, ethanol and ammonia gas sensing properties of nano-structured titanium dioxide thick films. J. Mater. Sci.: Mater. Electron. 28, 9011 (2017).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Metallurgical and Materials Engineering, NITK Surathkal, India. The authors also thank the Department of Physics, CMR Technical Campus, Hyderabad, for providing gas sensing measurements.

Funding

This work is supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (CRG/2021/001084).

Author information

Authors and Affiliations

Authors

Contributions

RVV designed, performed the experiments, and wrote the manuscript. PN provided the gas sensing experimental facilities. SM gave essential guidance throughout the experimentation and preparation of the manuscript. MG, PN, and SM reviewed and corrected the manuscript. All the authors read and agreed the final manuscript.

Corresponding author

Correspondence to Saumen Mandal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 763 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vardhan, R.V., Manjunath, G., Nagaraju, P. et al. Tracing of Ammonia Gas by Solution-Combustion-Derived Pristine and Nb-Doped TiO2 Films: Beneficial Impact of Crystallinity and Adsorbed Oxygen on the Gas Response. J. Electron. Mater. 52, 6360–6377 (2023). https://doi.org/10.1007/s11664-023-10577-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10577-6

Keywords

Navigation