Skip to main content
Log in

A comparative study on enhancer and inhibitor of glycine–nitrate combustion ZnO screen-printed sensor: detection of low concentration ammonia at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a comparative study on enhancing and inhibiting the sensing performance of Sr-doped ZnO (Sr0.01 Zn0.99O) and RuO2-activated Sr-doped ZnO heterostructured sensors towards the low concentration (≤ 50 ppm) of ammonia gas at ambient. Sub-microns sized with high specific surface area, high reactive, oxygen-deficient Sr-doped ZnO particles were synthesized at low temperature (196 °C) through facile glycine–nitrate solution combustion synthesis (SCS) method. Porous, adhered screen-printed film of Sr-doped ZnO with optical bandgap (3.22 eV) was dip-coated using 0.02 M RuCl3 aqueous solution to obtain RuO2 activation. Smaller crystallite size and lesser lattice distortion obtained with Sr-doping in ZnO enhance the gas response (S = 71) towards the 50 ppm of ammonia gas at room temperature. RuO2-activated Sr-doped ZnO sensor associated with lesser oxygen vacancies and a lower concentration of chemisorbed oxygen species due to passivation layer and no-spill-over activity of RuO2, which inhibits the gas response from 71 to 3. Sr-doped ZnO-based sensor shows high selectivity towards ammonia against 50 ppm of volatile organic compound (VOCs) vapor. Expeditious sensor kinetics (response time and recovery time) in the Sr-doped ZnO sensor was observed, in which smaller crystallite size offers a shorter distance for the diffusion of oxygen vacancies (Vo). Ultra-high-sensitive and selective sensors with ease and economical fabrication offer feasibility in industries and domestic applications where detection of the less concentration ammonia vapor is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Cui et al., Fast and selective room-temperature ammonia sensors using silver nanocrystal-functionalized carbon nanotubes. ACS Appl. Mater. Interfaces. 4(9), 4898–4904 (2012)

    CAS  Google Scholar 

  2. B. Timmer et al., Ammonia sensors and their applications—a review. Sensors Actuators B 107(2), 666–677 (2005)

    CAS  Google Scholar 

  3. K.-I. Shimizu et al., Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors. Sensors Actuators B 141(2), 410–416 (2009)

    CAS  Google Scholar 

  4. C. Liu et al., The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the 221 high-index faceted SnO2 octahedra. CrystEngComm 17(33), 6308–6313 (2015)

    CAS  Google Scholar 

  5. Z. Pang et al., Fabrication of PA6/TiO2/PANI composite nanofibers by electrospinning–electrospraying for ammonia sensor. Colloids Surf. A 461, 113–118 (2014)

    CAS  Google Scholar 

  6. W. Liu et al., Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes. Appl. Surf. Sci. 390, 929–935 (2016)

    CAS  Google Scholar 

  7. Y.-F. Sun et al., Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610–2631 (2012)

    CAS  Google Scholar 

  8. L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sensors Actuators A 267, 242–261 (2017)

    CAS  Google Scholar 

  9. G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. 61(1–6), 1–39 (2008)

    Google Scholar 

  10. S. Ansari et al., Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films 295(1–2), 271–276 (1997)

    CAS  Google Scholar 

  11. P. Sahay, R. Nath, Al-doped ZnO thin films as methanol sensors. Sensors Actuators B 134(2), 654–659 (2008)

    CAS  Google Scholar 

  12. H.-B. Lin et al., Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers. Scripta Mater. 59(7), 780–783 (2008)

    CAS  Google Scholar 

  13. Y. Chen et al., Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core–shell nanowire arrays fabricated by ion-replacement method. Appl. Catal. B 209, 110–117 (2017)

    CAS  Google Scholar 

  14. P.S. Venkatesh et al., Point defects assisted NH3 gas sensing properties in ZnO nanostructures. Sensors Actuators B 212, 10–17 (2015)

    Google Scholar 

  15. A.J. Kulandaisamy et al., Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping. J. Alloy. Compd. 688, 422–429 (2016)

    CAS  Google Scholar 

  16. K. Lokesh et al., Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers. IEEE Sens. J. 16(8), 2477–2483 (2016)

    CAS  Google Scholar 

  17. S.-W. Fan et al., UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 95(14), 142106 (2009)

    Google Scholar 

  18. A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B 229, 206–217 (2018)

    CAS  Google Scholar 

  19. A. Renitta, K. Vijayalakshmi, Highly sensitive hydrogen safety sensor based on Cr incorporated ZnO nano-whiskers array fabricated on ITO substrate. Sensors Actuators B 237, 912–923 (2016)

    CAS  Google Scholar 

  20. K. Ravichandran et al., Effect of tungsten doping on the ammonia vapour sensing ability of ZnO thin films prepared by a cost effective simplified spray technique. Surf. Interfaces 18, 100412 (2019)

    Google Scholar 

  21. G.T. Rao, D.T. Rao, Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature. Sensors Actuators B 55(2–3), 166–169 (1999)

    CAS  Google Scholar 

  22. R.S. Ganesh et al., Tuning the selectivity of NH3 gas sensing response using Cu-doped ZnO nanostructures. Sensors Actuators A 269, 331–341 (2018)

    CAS  Google Scholar 

  23. D.R. Miller et al., Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B 204, 250–272 (2014)

    CAS  Google Scholar 

  24. M. Poloju et al., Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater. Sci. Eng. B 227, 61–67 (2018)

    CAS  Google Scholar 

  25. H. Tang et al., A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sensors Actuators B 114(2), 910–915 (2006)

    CAS  Google Scholar 

  26. G.H. Mhlongo et al., Room temperature ferromagnetism and gas sensing in ZnO nanostructures: influence of intrinsic defects and Mn Co, Cu doping. Appl. Surf. Sci. 390, 804–815 (2016)

    CAS  Google Scholar 

  27. D. Patil et al., Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature. Sensors Actuators B 126(2), 368–374 (2007)

    CAS  Google Scholar 

  28. J. Iqbal et al., Effect of Co doping on morphology, optical and magnetic properties of ZnO 1-D nanostructures. J. Mater. Sci.: Mater. Electron. 24(11), 4393–4398 (2013)

    CAS  Google Scholar 

  29. R.S. Ganesh et al., Controlled synthesis of Ni-doped ZnO hexagonal microdiscs and their gas sensing properties at low temperature. Chem. Phys. Lett. 689, 92–99 (2017)

    CAS  Google Scholar 

  30. W. Wen et al., Gas-sensing property of a nitrogen-doped zinc oxide fabricated by combustion synthesis. Sensors Actuators B 184, 78–84 (2013)

    CAS  Google Scholar 

  31. M. Graf et al., Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films. J. Nanopart. Res. 8(6), 823–839 (2006)

    CAS  Google Scholar 

  32. M. Zhang et al., Electromagnetic functions of patterned 2d materials for micro–nano devices covering ghz, thz, and optical frequency. Adv. Opt. Mater. 7(19), 1900689 (2019)

    CAS  Google Scholar 

  33. G. Manjunath et al., A scalable screen-printed high performance ZnO-UV and gas sensor: effect of solution combustion. Mater. Sci. Semicond. Process. 107, 104828 (2020)

    CAS  Google Scholar 

  34. T. Vijayan et al., Comparative investigation on nanocrystal structure, optical, and electrical properties of ZnO and Sr-doped ZnO thin films using chemical bath deposition method. J. Mater. Sci. 43(6), 1776–1782 (2008)

    CAS  Google Scholar 

  35. R. Heller et al., Precision determination of the lattice constants of zinc oxide. J. Appl. Phys. 21(12), 1283–1284 (1950)

    Google Scholar 

  36. K.P. Raj et al., Structural, optical, photoluminescence and photocatalytic assessment of Sr-doped ZnO nanoparticles. Mater. Chem. Phys. 183, 24–36 (2016)

    Google Scholar 

  37. J. Shen et al., An ESCA study of the interaction of oxygen with the surface of ruthenium. Appl. Surf. Sci. 51(1–2), 47–60 (1991)

    CAS  Google Scholar 

  38. G. Lemay et al., Synthesis of some ring-substituted ruthenocenes and their use in the preparation of Ru/ZSM-5 catalysts. Can. J. Chem. 64(9), 1943–1948 (1986)

    CAS  Google Scholar 

  39. A. Iriondo et al., Butyraldehyde production by butanol oxidation over Ru and Cu catalysts supported on ZrO2, TiO2 and CeO2. Studies in surface science and catalysis (Elsevier, Amsterdam, 2010), pp. 453–456

    Google Scholar 

  40. M. Navaneethan et al., Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods. J. Alloy. Compd. 698, 555–564 (2017)

    Google Scholar 

  41. J. Liao et al., The influence of post-annealing on the chemical structures and dielectric properties of the surface layer of Ba0.6Sr0.4TiO3 films. J. Phys. D 39(11), 2473 (2006)

    CAS  Google Scholar 

  42. M. Sosulnikov, Y.A. Teterin, X-ray photoelectron studies of Ca, Sr and Ba and their oxides and carbonates. J. Electron Spectrosc. Relat. Phenom. 59(2), 111–126 (1992)

    CAS  Google Scholar 

  43. W. Wang et al., Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci. Rep. 4, 4452 (2014)

    Google Scholar 

  44. Q. Zhu et al., Selectively enhanced UV and NIR photoluminescence from a degenerate ZnO nanorod array film. J. Mater. Chem. C 2(23), 4566–4580 (2014)

    CAS  Google Scholar 

  45. M. Wagh et al., Modified zinc oxide thick film resistors as NH3 gas sensor. Sensors Actuators B 115(1), 128–133 (2006)

    CAS  Google Scholar 

  46. C. Xu et al., Grain size effects on gas sensitivity of porous SnO2-based elements. Sensors Actuators B 3(2), 147–155 (1991)

    CAS  Google Scholar 

  47. N. Izu et al., The effects of the particle size and crystallite size on the response time for resistive oxygen gas sensor using cerium oxide thick film. Sensors Actuators B 94(2), 222–227 (2003)

    CAS  Google Scholar 

  48. A.K. Bal et al., Characterization and ammonia sensing properties of pure and ámodified ZnO films. Appl. Phys. A 103(2), 497–503 (2011)

    CAS  Google Scholar 

  49. G.K. Mani, J.B.B. Rayappan, Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films. Appl. Surf. Sci. 311, 405–412 (2014)

    CAS  Google Scholar 

  50. G.K. Mani, J.B.B. Rayappan, A highly selective and wide range ammonia sensor—nanostructured ZnO: Co thin film. Mater. Sci. Eng. B 191, 41–50 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Science and Engineering Research Board (SERB), Department of Science and Technology, India (Grant No. ECR/2015/000339) is gratefully acknowledged. One of the author P. Nagaraju would like to thank DST-SERB for financial support to carry out the present work (Grant No. ECR/2016/000534).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumen Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunath, G., Nagaraju, P. & Mandal, S. A comparative study on enhancer and inhibitor of glycine–nitrate combustion ZnO screen-printed sensor: detection of low concentration ammonia at room temperature. J Mater Sci: Mater Electron 31, 10366–10380 (2020). https://doi.org/10.1007/s10854-020-03584-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03584-4

Navigation