Skip to main content
Log in

Dielectric Relaxation Behavior and Conduction Mechanism of Ca and Ti Co-Doped Multiferroic Bismuth Ferrite

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A multiferroic material with a wide range of uses is bismuth ferrite, which shows outstanding potential. Ca and Ti co-doped BFO samples have been synthesized by the modified sol–gel method. The crystal structures of the samples have been confirmed by x-ray diffraction. The microscopic dielectric relaxations and conduction processes in these materials have been analyzed using complex impedance, complex electric modulus, and frequency-dependent ac conductivity analyses. The modified Debye’s function has been used to study the dispersion behavior of the dielectric constant. The brick-layer model has been used to describe the dielectric characteristics of each sample. Furthermore, to study the conduction mechanism, ac conductivity data have been analyzed using Jonscher’s power law and the Arrhenius equation. The Arrhenius technique was used to calculate the relaxation time as well as the activation energies using the imaginary part of the electrical impedance and the modulus. The presence of non-Debye-type relaxation processes, which include localized and long-range relaxation processes, is supported by the electric modulus spectroscopy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, and J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).

    Article  CAS  Google Scholar 

  2. G. Catalan, and J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009).

    Article  CAS  Google Scholar 

  3. D.H. Wang, W.C. Goh, M. Ning, and C.K. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature. Appl. Phys. Lett. 88, 212907 (2006).

    Article  Google Scholar 

  4. C. Ederer, and N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005).

    Article  Google Scholar 

  5. R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, and A. Banerjee, Effect of yttrium on improvement of dielectric properties and magnetic switching behavior in BiFeO3. J. Phys. Condens. Matter 20, 045218 (2008).

    Article  Google Scholar 

  6. I. Sosnowska, T.P. Neumaier, and E. Steichele, Spiral magnetic ordering in bismuth ferrite. J. Phys. C Solid State Phys. 15, 4835 (1982).

    Article  CAS  Google Scholar 

  7. J.R. Teague, R. Gerson, and W.J. James, Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073 (1970).

    Article  CAS  Google Scholar 

  8. S. Ghosh, S. Dasgupta, A. Sen, and H.S. Maiti, Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route. J. Am. Ceram. Soc. 88, 1349 (2005).

    Article  CAS  Google Scholar 

  9. M.M. Kumar, V.R. Palkar, K. Srinivas, and S.V. Suryanarayana, Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett. 76, 2764 (2000).

    Article  CAS  Google Scholar 

  10. M. Rangi, S. Sanghi, S. Jangra, K. Kaswan, S. Khasa, and A. Agarwal, Crystal structure transformation and improved dielectric and magnetic properties of la-substituted BiFeO3 multiferroics. Ceram. Int. 43, 12095 (2017).

    Article  CAS  Google Scholar 

  11. A. Ablat, R. Wu, M. Mamat, J. Li, E. Muhemmed, C. Si, R. Wu, J. Wang, H. Qian, and K. Ibrahim, Structural analysis and magnetic properties of Gd doped BiFeO3 Ceramics. Ceram. Int. 40, 14083 (2014).

    Article  CAS  Google Scholar 

  12. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, and M. Singh, Substitution driven structural and magnetic transformation in Ca-Doped BiFeO3 nanoparticles. RSC Adv. 6, 43080 (2016).

    Article  CAS  Google Scholar 

  13. R. Das, and K. Mandal, Magnetic, Ferroelectric and magnetoelectric properties of Ba-doped BiFeO3. J. Magn. Magn. Mater. 324, 1913 (2012).

    Article  CAS  Google Scholar 

  14. A. Moure, J. Tartaj, and C. Moure, Processing and characterization of Sr doped BiFeO3 multiferroic materials by high energetic milling. J. Alloys Compd. 509, 7042 (2011).

    Article  CAS  Google Scholar 

  15. R. Pandey, L.K. Pradhan, P. Kumar, and M. Kar, Effect of Ti Substitution in place of Fe on crystal symmetries and magnetic properties of Bi0.850La0.150FeO3. J. Phys. Chem. Solids 119, 107 (2018).

    Article  CAS  Google Scholar 

  16. F. Chang, N. Zhang, F. Yang, S. Wang, and G. Song, Effect of Cr substitution on the structure and electrical properties of BiFeO3 ceramics. J. Phys. Appl. Phys. 40, 7799 (2007).

    Article  CAS  Google Scholar 

  17. M. Kumar, and K.L. Yadav, Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system. J. Appl. Phys. 100, 074111 (2006).

    Article  Google Scholar 

  18. Y.-K. Jun, W.T. Moon, C.M. Chang, H.S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, and S.-H. Hong, Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics. Solid State Commun. 135, 133 (2005).

    Article  CAS  Google Scholar 

  19. B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, and D. Viehland, Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys. Rev. B 69, 064114 (2004).

    Article  Google Scholar 

  20. S. Madolappa, A.V. Anupama, P.W. Jaschin, K.B.R. Varma, and B. Sahoo, Magnetic and ferroelectric characteristics of Gd3+ and Ti4+ co-doped BiFeO3 ceramics. Bull. Mater. Sci. 39, 593 (2016).

    Article  CAS  Google Scholar 

  21. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 192, 55 (1993).

    Article  Google Scholar 

  22. S. Carbonin, F. Martignago, G. Menegazzo, and A. Dal Negro, X-ray single-crystal study of spinels: in situ heating. Phys. Chem. Miner. 29, 503 (2002).

    Article  CAS  Google Scholar 

  23. C. Suryanarayana, and M.G. Norton, X-Ray diffraction, 1st ed., (New York: Springer, 1998).

    Book  Google Scholar 

  24. S. Ebrahimi, D. Souri, and A. Khezripour, Strain-size features of bare ZnSe: Cu and ZnSe:Cu@ZnS core/shell quantum dots from extensive x-ray diffraction analysis, and their photoluminescence properties. J. Lumin. 244, 118757 (2022).

    Article  CAS  Google Scholar 

  25. A.K. Zak, N.S. Abd Aziz, A.M. Hashim, and F. Kordi, XPS and UV–Vis studies of Ga-doped zinc oxide nanoparticles synthesized by gelatin based sol-gel approach. Ceram. Int. 42, 13605 (2016).

    Article  Google Scholar 

  26. M. Abushad, W. Khan, S. Naseem, S. Husain, M. Nadeem, and A. Ansari, Influence of Mn doping on microstructure, optical, dielectric and magnetic properties of BiFeO3 nanoceramics synthesized via sol–gel method. Ceram. Int. 45, 7437 (2019).

    Article  CAS  Google Scholar 

  27. A.K. Jena, S. Satapathy, and J. Mohanty, Magnetic and dielectric response in yttrium (Y)-manganese (Mn) substituted multiferroic Bi1−xYxFe1−yMnyO3 (x = y = 0; x = 0.03, 0.06, 0.12, y = 0.05) ceramics. J. Appl. Phys. 124, 174103 (2018).

    Article  Google Scholar 

  28. S.K. Paswan, L.K. Pradhan, P. Kumar, S. Kumari, M. Kar, and L. Kumar, Electrical transport properties of nanocrystalline and bulk nickel ferrite using complex impedance spectroscopy: a comparative study. Phys. Scr. 97, 095812 (2022).

    Article  Google Scholar 

  29. K.S. Cole, and R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341 (1941).

    Article  CAS  Google Scholar 

  30. C.H. Rayssi, S. El Kossi, J. Dhahri, and K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 8, 17139 (2018).

    Article  CAS  Google Scholar 

  31. K.L. Ngai, A.K. Jonscher, and C.T. White, On the origin of the universal dielectric response in condensed matter. Nature 277, 185 (1979).

    Article  CAS  Google Scholar 

  32. A. Ghosh, Complex Ac conductivity of tellurium cuprate glassy semiconductors. Phys. Rev. B 47, 15537 (1993).

    Article  CAS  Google Scholar 

  33. P. Pandit, S. Satapathy, and P.K. Gupta, Effect of La substitution on conductivity and dielectric properties of Bi1−xLaxFeO3 ceramics: an impedance spectroscopy analysis. Phys. B Condens. Matter. 406, 2669 (2011).

    Article  CAS  Google Scholar 

  34. A. Laha, and S.B. Krupanidhi, Dielectric response and impedance spectroscopy of 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 thin films. Mater. Sci. Eng. B 98, 204 (2003).

    Article  Google Scholar 

  35. J. Pcharski, PEO based composite solid electrolyte containing nasicon. Solid State Ion. 28, 979 (1988).

    Article  Google Scholar 

  36. A.R. West, D.C. Sinclair, and N. Hirose, Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J. Electroceramics 1, 65 (1997).

    Article  CAS  Google Scholar 

  37. M. Sural, and A. Ghosh, Electrical conductivity and conductivity relaxation in glasses. J. Phys. Condens. Matter. 10, 10577 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge IIT Patna and Mahatma Gandhi Central University, Bihar for extending experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 328 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, M., Pradhan, L.K., Kumar, L. et al. Dielectric Relaxation Behavior and Conduction Mechanism of Ca and Ti Co-Doped Multiferroic Bismuth Ferrite. J. Electron. Mater. 52, 6182–6202 (2023). https://doi.org/10.1007/s11664-023-10563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10563-y

Keywords

Navigation