Skip to main content
Log in

Porous ZnO with Enhanced Thermoelectric Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Porous ZnO was synthesized by a soft template method using F127 as a surfactant together with spark plasma sintering (SPS) treatment. The pore structure and textural characteristics of the samples were investigated by x-ray diffraction analysis, field-emission scanning electron microscopy, and N2 adsorption/desorption measurements. Due to the pore structure, the porous ZnO has an ultralow thermal conductivity of 2.2 W m−1 K−1 measured at room temperature after sintering at 500°C. However, the electrical conductivity stays relatively low at values between 0.02 and 15.8 S m−1 in the measurement temperature range of 27–500°C. Although the electrical conductivity is deteriorated by the pore structure, it is compensated by an increase in the sintering temperature. With the increase in sintering temperature, the electrical conductivity increases. As a result, a high electrical conductivity of 5405 S m−1 is achieved at room temperature for the porous ZnO sintered at 800°C. Because of its high power factor and moderate thermal conductivity, the maximum ZT value of porous ZnO sintered at 800°C reaches 0.0573 measured at 500°C, which is increased by 6 times compared with ZnO (0.008) around this temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. Engl. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  2. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  3. X. Zhou, Y. Yan, X. Lu, H. Zhu, X. Han, G. Chen, and Z. Ren, Routes for high-performance thermoelectric materials. Mater. Today 21, 974 (2018).

    Article  CAS  Google Scholar 

  4. X. Zhang and L.D. Zhao, Thermoelectric materials: energy conversion between heat and electricity. J. Materiomics 1, 92 (2015).

    Article  Google Scholar 

  5. L.D. Zhao, C. Chang, G. Tan, and M.G. Kanatzidis, SnSe: a remarkable new thermoelectric material. Energy Environ. Sci. 9, 3044 (2016).

    Article  CAS  Google Scholar 

  6. L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, and M.G. Kanatzidis, Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351, 141 (2016).

    Article  CAS  Google Scholar 

  7. J.F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152 (2010).

    Article  Google Scholar 

  8. G.D. Mahan and J.O. Sofo, The best thermoelectric. Proc. Natl. Acad. Sci. U S A 93, 7436 (1996).

    Article  CAS  Google Scholar 

  9. J. He and T.M. Tritt, Advances in thermoelectric materials research: looking back and moving forward. Science 357, 1369 (2017).

    Article  CAS  Google Scholar 

  10. L.L. Chen, Z.Y. Zhang, N. Qi, B. Zhou, S.P. Deng, Z.Q. Chen, Y.C. Wu, and X.F. Tang, Giant reduction in thermal conductivity of Co3O4 with ordered mesopore structures. Micropor. Mesopor. Mat. 296, 109969 (2020).

    Article  CAS  Google Scholar 

  11. B. Zhou, L. Chen, C. Li, N. Qi, Z. Chen, X. Su, and X. Tang, Significant enhancement in the thermoelectric performance of aluminum-doped ZnO tuned by pore structure. ACS Appl. Mater. Interfaces 12, 51669 (2020).

    Article  CAS  Google Scholar 

  12. J. Tang, H.T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Holey silicon as an efficient thermoelectric material. Nano Lett. 10, 4279 (2010).

    Article  CAS  Google Scholar 

  13. L. Yang, N. Yang, and B. Li, Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores. Nano Lett. 14, 1734 (2014).

    Article  CAS  Google Scholar 

  14. N. Baghdadi, N. Salah, A. Alshahrie, and K. Koumoto, Microwave irradiation to produce high performance thermoelectric material based on al doped ZnO nanostructures. Crystals 10, 610 (2020).

    Article  CAS  Google Scholar 

  15. X. Wang, Y. Zheng, A. Suwardi, J. Wu, S.L. Teo, Q. Zhu, G. Wu, and J. Xu, Effects of sintering temperature on thermoelectric figure of merit of trace Al2O3 doped n-type ZnO nanocomposites. Mater. Chem. Front. 6, 2468 (2022).

    Article  CAS  Google Scholar 

  16. P.M. Radingoana, S. Guillemet-Fritsch, J. Noudem, P.A. Olubambi, G. Chevallier, and C. Estournès, Thermoelectric properties of ZnO ceramics densified through spark plasma sintering. Ceram. Int. 46, 5229 (2020).

    Article  CAS  Google Scholar 

  17. H. Chen, Q. Sun, T. Tian, L. Zheng, M. Barré, I. Monot Laffez, M. Makowska-Janusik, G. Li, and A.H. Kassiba, Defects and microstructure of highly conducting Al-doped ZnO ceramics obtained via spark plasma sintering. J. Eur. Ceram. Soc. 40, 5529 (2020).

    Article  CAS  Google Scholar 

  18. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373 (2014).

    Article  CAS  Google Scholar 

  19. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  20. H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, and M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sust. Energ. Rev. 82, 4159 (2018).

    Article  CAS  Google Scholar 

  21. D. Bao, J. Chen, Y. Yu, W. Liu, L. Huang, G. Han, J. Tang, D. Zhou, L. Yang, and Z.G. Chen, Texture-dependent thermoelectric properties of nano-structured Bi2Te3. Chem. Eng. J. 388, 124295 (2020).

    Article  CAS  Google Scholar 

  22. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008).

    Article  CAS  Google Scholar 

  23. B. Jia, Y. Huang, Y. Wang, Y. Zhou, X. Zhao, S. Ning, X. Xu, P. Lin, Z. Chen, B. Jiang, and J. He, Realizing high thermoelectric performance in non-nanostructured n-type PbTe. Energ. Environ. Sci. 15, 1920 (2022).

    Article  CAS  Google Scholar 

  24. Y. Feng, X. Jiang, E. Ghafari, B. Kucukgok, C. Zhang, I. Ferguson, and N. Lu, Metal oxides for thermoelectric power generation and beyond. Adv. Compos. Hybrid Ma. 1, 114 (2017).

    Article  Google Scholar 

  25. Y. Yin, B. Tudu, and A. Tiwari, Recent advances in oxide thermoelectric materials and modules. Vacuum 146, 356 (2017).

    Article  CAS  Google Scholar 

  26. G. Ren, J. Lan, C. Zeng, Y. Liu, B. Zhan, S. Butt, Y.H. Lin, and C.W. Nan, High performance oxides-based thermoelectric materials. Jom 67, 211 (2014).

    Article  Google Scholar 

  27. J.W. Fergus, Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Cera. Soc. 32, 525 (2012).

    Article  CAS  Google Scholar 

  28. S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, and K. Kalantar-zadeh, Transition metal oxides-thermoelectric properties. Prog. Mater. Sci. 58, 1443 (2013).

    Article  CAS  Google Scholar 

  29. T.M.V.M. Thiruvalluvan, V. Natarajan, V. Manimuthu, S. Valanarasu, P. Anandan, and M. Arivanandhan, Effects of Al composition on the secondary phase formation and thermoelectric properties of Zn1-xAlxO nanocrystals. J. Phys. Chemis. Solids 122, 162 (2018).

    Article  CAS  Google Scholar 

  30. Y. Wu, D.B. Zhang, Z. Zhao, J. Pei, and B.P. Zhang, Enhanced thermoelectric properties of ZnO: C doping and band gap tuning. J. Eur. Cera. Soc. 41, 1324 (2021).

    Article  CAS  Google Scholar 

  31. D.B. Zhang, H.Z. Li, B.P. Zhang, D.D. Liang, and M. Xia, Hybrid-structured ZnO thermoelectric materials with high carrier mobility and reduced thermal conductivity. RSC Adv. 7, 10855 (2017).

    Article  CAS  Google Scholar 

  32. J. Soli, S. Kachbouri, E. Elaloui, and C. Charnay, Role of surfactant type on morphological, textural, optical, and photocatalytic properties of ZnO nanoparticles obtained by modified sol-gel. J. Sol-Gel Sci. Techn. 100, 271 (2021).

    Article  CAS  Google Scholar 

  33. H. Zhang, R. Wu, Z. Chen, G. Liu, Z. Zhang, and Z. Jiao, Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties. Cryst. Eng. Comm. 14, 1775 (2012).

    Article  CAS  Google Scholar 

  34. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051 (2015).

    Article  CAS  Google Scholar 

  35. Q. Sun, G. Li, T. Tian, Z. Man, L. Zheng, M. Barré, J. Dittmer, F. Goutenoire, and A.H. Kassiba, Controllable microstructure tailoring for regulating conductivity in Al-doped ZnO ceramics. J. Eur. Cera. Soc. 40, 349 (2020).

    Article  CAS  Google Scholar 

  36. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, High temperature thermoelectric properties of (Zn1−xAlx)O. J. Appl. Phys. 79, 1816 (1996).

    Article  CAS  Google Scholar 

  37. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J. Mater. Chem. 7, 85 (1997).

    Article  CAS  Google Scholar 

  38. K.F. Cai, E. Müller, C. Drašar, and A. Mrotzek, Preparation and thermoelectric properties of Al-doped ZnO ceramics. Mater. Sci. Eng. B 104, 45 (2003).

    Article  Google Scholar 

  39. A.M. Adam, A. El-Khouly, A.P. Novitskii, E.M.M. Ibrahim, A.V. Kalugina, D.S. Pankratova, A.I. Taranova, A.A. Sakr, A.V. Trukhanov, M.M. Salem, and V. Khovaylo, Enhanced thermoelectric figure of merit in Bi-containing Sb2Te3 bulk crystalline alloys. J. Phys. Chem. Solids 138, 109262 (2020).

    Article  CAS  Google Scholar 

  40. T. Tian, L. Cheng, L. Zheng, J. Xing, H. Gu, S. Bernik, H. Zeng, W. Ruan, K. Zhao, and G. Li, Defect engineering for a markedly increased electrical conductivity and power factor in doped ZnO ceramic. Acta Mater. 119, 136 (2016).

    Article  CAS  Google Scholar 

  41. L. Han, N. Van Nong, W. Zhang, L.T. Hung, T. Holgate, K. Tashiro, M. Ohtaki, N. Pryds, and S. Linderoth, Effects of morphology on the thermoelectric properties of Al-doped ZnO. RSC Adv. 4, 12353 (2014).

    Article  CAS  Google Scholar 

  42. C. Gayner and Y. Amouyal, Energy filtering of charge carriers: current trends, challenges, and prospects for thermoelectric materials. Adv. Funct. Mater. 30, 1901789 (2019).

    Article  Google Scholar 

  43. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).

    Article  Google Scholar 

  44. B. Gahtori, S. Bathula, K. Tyagi, M. Jayasimhadri, A.K. Srivastava, S. Singh, R.C. Budhani, and A. Dhar, Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy 13, 36 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant nos. 12175166 and Henan Province Science and Technology Research Project 232102230070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhou, B., Pan, W. et al. Porous ZnO with Enhanced Thermoelectric Properties. J. Electron. Mater. 52, 6071–6079 (2023). https://doi.org/10.1007/s11664-023-10536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10536-1

Keywords

Navigation