Skip to main content

Advertisement

Log in

Highly Graphitized Porous Carbon Prepared from Biomass Waste Sunflower Shells for Supercapacitors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The graphitization and porous structure of carbon materials have been the focus of research on the electrochemical properties of supercapacitors. In this work, highly graphitized porous carbon (HPCS) is fabricated from biowaste sunflower shells using potassium hydroxide (KOH) as an activator. The effects of the mass ratio of KOH to raw material and activation temperature on the electrochemical properties are studied in detail. The results show that highly graphitized porous carbon after activation at 800°C for 2 h (HPCS-800–2) exhibits obvious graphitized stripes with a spacing of ca. 0.34 nm and a lower ID/IG value (0.797) than that of pristine carbon with non-activation (0.917). The HPCS-800–2 reaches a high specific capacitance of 403 F g−1 at a current density of 0.5 A g−1. In addition, the HPCS-800–2//HPCS-800–2 symmetric supercapacitor device displays outstanding higher energy density of 20.84 Wh kg−1 than that of the YP50//YP50 device (8.18 Wh kg−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Park, J. Lee, and W. Kim, Redox-active water-in-salt electrolyte for high-energy-density supercapacitors. ACS Energy Lett. 7, 1266 (2022).

    Article  CAS  Google Scholar 

  2. Q. Wu, T. He, Y. Zhang, J. Zhang, Z. Wang, Y. Liu, L. Zhao, Y. Wu, and F. Ran, Cyclic stability of supercapacitors: materials, energy storage mechanism, test methods, and device. J. Mater. Chem. A 9, 24094 (2021).

    Article  CAS  Google Scholar 

  3. M. Xie, H. Meng, J. Chen, Y. Zhang, C. Du, L. Wan, and Y. Chen, High-volumetric supercapacitor performance of ordered mesoporous carbon electrodes enabled by the faradaic-active nitrogen doping and decrease of microporosity. ACS Appl. Energy Mater. 4, 1840 (2021).

    Article  CAS  Google Scholar 

  4. Z. Qin, J. Liu, B. Sun, H. Zou, L. Chen, Y. Xu, Y. Cao, and C. Chen, AC/Ni (OH)2 as a porous electrode material for supercapacitors with high-performance. Electrochim. Acta 435, 141370 (2022).

    Article  CAS  Google Scholar 

  5. Y. Yue, Y.L. Huang, and S.-W. Bian, Nitrogen-doped hierarchical porous carbon films derived from metal–organic framework/cotton composite fabrics as freestanding electrodes for flexible supercapacitors. ACS Appl. Electron. Mater. 3, 2178 (2021).

    Article  CAS  Google Scholar 

  6. Y. Zhou, H. Qi, J. Yang, Z. Bo, F. Huang, M.S. Islam, X. Lu, L. Dai, R. Amal, C.H. Wang, and Z. Han, Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci. 14, 1854 (2021).

    Article  CAS  Google Scholar 

  7. W. Wei, Z. Chen, Y. Zhang, J. Chen, L. Wan, C. Du, M. Xie, and X. Guo, Full-faradaic-active nitrogen species doping enables high-energy-density carbon-based supercapacitor. J. Energy. Chem. 48, 277 (2020).

    Article  Google Scholar 

  8. L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang, Y. Li, X. Ren, H. Mi, L. Deng, and Z. Zheng, Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30, 1706054 (2018).

    Article  Google Scholar 

  9. X. Zheng, J. Luo, W. Lv, D.W. Wang, and Q.H. Yang, Two-dimensional porous carbon: synthesis and iontransport properties. Adv. Mater. 27, 5388 (2015).

    Article  CAS  Google Scholar 

  10. Y. Tan, Y. Liu, L. Kong, L. Kang, and F. Ran, Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method. J. Power Sour. 363, 1 (2017).

    Article  CAS  Google Scholar 

  11. Y. Tan, Y. Liu, Z. Tang, Z. Wang, L. Kong, L. Kang, Z. Liu, and F. Ran, Concise N-doped carbon nanosheets/vanadium nitride nanoparticles materials via intercalative polymerization for supercapacitors. Sci. Rep. 8, 2915 (2018).

    Article  Google Scholar 

  12. Y. Tan, J. Ren, X. Li, L. He, C. Chen, and H. Li, Highly graphitic porous carbon prepared via K2FeO4-assisted KOH activation for supercapacitors. New J. Chem. 46, 14338 (2022).

    Article  CAS  Google Scholar 

  13. M.S. Javed, M. Imran, M.A. Assiri, I. Hussain, S. Hussain, S.H. Siyal, M. Saleem, and S.S.A. Shah, One-step synthesis of carbon incorporated 3D MnO2 nanorods as a highly efficient electrode material for pseudocapacitors. Mater. Lett. 295, 129838 (2021).

    Article  Google Scholar 

  14. M. Jayachandran, A. Rose, T. Maiyalagan, N. Poongodi, and T. Vijayakumar, Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochim. Acta 366, 137412 (2021).

    Article  CAS  Google Scholar 

  15. X. Tian, X. Sun, Z. Jiang, Z.J. Jiang, X. Hao, D. Shao, and T. Maiyalagan, Exploration of the active center structure of nitrogen-doped graphene for control over the growth of Co3O4 for a high performance supercapacitor. ACS Appl. Energy Mater. 1, 143 (2017).

    Article  Google Scholar 

  16. D. Ángel-Meraz, H. de Jesús Orantes-Flores, E.R. Morales, P.Y. Sevilla-Camacho, and R. Castillo-Palomera, The use of activated carbon from coffee endocarp for the manufacture of supercapacitors. J. Mater. Sci. Mater. Electron. 31, 7547 (2020).

    Article  Google Scholar 

  17. Y. Tan, Y. Li, W. Wang, and F. Ran, High performance electrode of few-layer-carbon@bulk-carbon synthesized via controlling diffusion depth from liquid phase to solid phase for supercapacitors. J. Energy Storage 32, 101672 (2020).

    Article  Google Scholar 

  18. C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, and Y. Zhang, Advanced carbon for flexible and wearable electronics. Adv. Mater. 31, e1801072 (2019).

    Article  Google Scholar 

  19. B. Chang, W. Shi, H. Yin, S. Zhang, and B. Yang, Poplar catkin-derived self-templated synthesis of N-doped hierarchical porous carbon microtubes for effective CO2 capture. Chem. Eng. J. 358, 1507 (2019).

    Article  CAS  Google Scholar 

  20. Y. Tan, L. Meng, Y. Wang, W. Dong, L. Kong, L. Kang, and F. Ran, Negative electrode materials of molybdenum nitride/N-doped carbon nano-fiber via electrospinning method for high-performance supercapacitors. Electrochim. Acta 277, 41 (2018).

    Article  CAS  Google Scholar 

  21. D.M. Puente-Siller, A.E. García-Castillo, J.A. López-Corpus, and A. Perea-Garduño, Evolution in the formation of graphene nanocapsules from coal tar pitch. Int. J. Coal Sci. Technol. 7, 816 (2020).

    Article  CAS  Google Scholar 

  22. D.C. Martínez-Casillas, I. Mascorro-Gutiérrez, C.E. Arreola-Ramos, H.I. Villafán-Vidales, C.A. Arancibia-Bulnes, V.H. Ramos-Sánchez, and A.K. Cuentas-Gallegos, Evolution in the formation of graphene nanocapsules from coal tar pitch. Carbon 148, 403 (2019).

    Article  Google Scholar 

  23. W. Shi, B. Chang, H. Yina, S. Zhang, B. Yang, and X. Dong, Crab shell-derived honeycomb-like graphitized hierarchically porous carbons for satisfactory rate performance in all-solid-state supercapacitors. Sustain. Energy Fuels 3, 1201 (2019).

    Article  CAS  Google Scholar 

  24. H. Liu, S. Su, H. Wang, M. Wang, S. Zhang, B. Chang, and B. Yang, A sustainable one-step strategy for highly graphitized capacitive carbons with hierarchical micro–meso–macro porosity. Nanoscale Adv. 4, 1394 (2022).

    Article  CAS  Google Scholar 

  25. A. Khan, R.A. Senthil, J. Pan, S. Osman, Y. Sun, and X. Shu, A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application. Electrochim. Acta 335, 135588 (2020).

    Article  CAS  Google Scholar 

  26. S. Sankar, A.T.A. Ahmed, A.I. Inamdar, H. Im, Y.B. Im, Y. Lee, D.Y. Kim, and S. Lee, Biomass-derived ultrathin mesoporous graphitic carbon nanoflakes as stable electrode material for high-performance supercapacitors. Mater. Des. 169, 107688 (2019).

    Article  CAS  Google Scholar 

  27. M. Zhou, J. Gomez, B. Li, Y.-B. Jiang, and S. Deng, Oil tea shell derived porous carbon with an extremely large specific surface area and modification with MnO2 for high-performance supercapacitor electrodes. Appl. Mater. Today 7, 47 (2017).

    Article  Google Scholar 

  28. Z. Zhang, S. Yang, H. Li, Y. Zan, X. Li, Y. Zhu, M. Dou, and F. Wang, Sustainable carbonaceous materials derived from biomass as metal-free electrocatalysts. Adv. Mater. 31, e1805718 (2019).

    Article  Google Scholar 

  29. H. Yang, S. Ye, J. Zhou, and T. Liang, Biomass-derived porous carbon materials for supercapacitor. Front. Chem. 7, 00274 (2019).

    Article  CAS  Google Scholar 

  30. M. Kempasiddaiah, K.S. Raj, V. Kandathil, R.B. Dateer, B.S. Sasidhar, C.V. Yelamaggad, C.S. Rout, and S. Patil, A Waste biomass-derived carbon-supported palladium-based catalyst for cross-coupling reactions and energy storage applications. Appl. Surf. Sci. 570, 151156 (2021).

    Article  CAS  Google Scholar 

  31. N. Sun, Z. Li, X. Zhang, W. Qin, C. Zhao, H. Zhang, D.H.L. Ng, S. Kang, H. Zhao, and G. Wang, Hierarchical porous carbon materials derived from kelp for superior capacitive applications. ACS Sustain. Chem. Eng. 7, 8735 (2019).

    Article  CAS  Google Scholar 

  32. X. Li, W. Xing, S. Zhuo, J. Zhou, F. Li, S.Z. Qiao, and G.Q. Lu, Preparation of capacitor’s electrode from sunflower seed shell. Bioresour. Technol. 102, 1118 (2011).

    Article  CAS  Google Scholar 

  33. H.Y. Zhang, H.J. Niu, Y.M. Wang, C. Wang, X.D. Bai, S. Wang, and W. Wang, A simple method to prepare carbon nanotubes from sunflower seed hulls and sago and their application in supercapacitor. Pigment Resin Technol. 44, 7 (2015).

    Article  Google Scholar 

  34. T. Fang, X. Yu, X. Zhang, Y. Li, L. Yu, X. Liang, L. Liao, and B. Li, A comparative investigation on lithium storage performance of carbon microsphere originated from agriculture bio-waste materials: sunflower stalk and walnut shell. Waste Biomass Valorization 11, 6981 (2020).

    Article  CAS  Google Scholar 

  35. Z.W. Zhang, C.Y. Lu, G.H. Liu, Y.J. Cao, Z. Wang, T.T. Yang, Y.H. Kang, X.Y. Wei, and H.C. Bai, Preparation of N/Ni co-doped cellulose-based porous carbon and its supercapacitor performance. J. Mater. Res. Technol. 19, 3034 (2022).

    Article  CAS  Google Scholar 

  36. X. Dong, H. Jin, R. Wang, J. Zhang, X. Feng, C. Yan, S. Chen, S. Wang, J. Wang, and J. Lu, High volumetric capacitance, ultralong life supercapacitors enabled by waxberry-derived hierarchical porous carbon materials. Adv. Energy Mater. 8, 1702695 (2018).

    Article  Google Scholar 

  37. R. Thomas, and B. Manoj, Electrochemical efficacies of coal derived nanocarbons. Int. J. Coal Sci. Technol. 8, 459 (2021).

    Article  CAS  Google Scholar 

  38. H.H. Fu, L. Chen, H. Gao, Y. Xiaokun, J. Hou, G. Wang, Y. Feng, H. Li, C. Fan, Y. Shi, and X. Guo, Walnut shell-derived hierarchical porous carbon with high performances for electrocatalytic hydrogen evolution and symmetry supercapacitors. Int. J. Hydrog. Energy 45(1), 443 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.159.

    Article  CAS  Google Scholar 

  39. Y. Gong, D. Li, C. Luo, Q. Fu, and C. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19, 4132 (2017).

    Article  CAS  Google Scholar 

  40. M. Shang, J. Zhang, X.C. Liu, Y. Liu, S. Guo, S. Yu, S. Filatov, and X.B. Yi, N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors. Appl. Surf. Sci 542, 148697 (2021).

    Article  CAS  Google Scholar 

  41. J. Cheng, Z. Lu, X. Zhao, X. Chen, and Y. Liu, Green needle coke-derived porous carbon for high-performance symmetric supercapacitor. J. Power Sour. 494, 229770 (2021).

    Article  CAS  Google Scholar 

  42. N. Cai, H. Cheng, H. Jin, H. Liu, P. Zhang, and M. Wang, Porous carbon derived from cashew nut husk biomass waste for high performance supercapacitors. J. Electroanal. Chem. 861, 113933 (2020).

    Article  CAS  Google Scholar 

  43. B. Chang, Y. Guo, Y. Li, H. Yin, S. Zhang, B. Yang, and X. Dong, Graphitized hierarchical porous carbon nanospheres: simultaneous activation/ graphitization and superior supercapacitance performance. J. Mater. Chem. A 3, 9565 (2015).

    Article  CAS  Google Scholar 

  44. M. Liu, K. Zhang, M. Si, H. Wang, L. Chai, and Y. Shi, Three-dimensional carbon nanosheets derived from micromorphologically regulated biomass for ultrahigh-performance supercapacitors. Carbon 153, 707 (2019).

    Article  CAS  Google Scholar 

  45. Z. Song, H. Duan, L. Miao, L. Ruhlmann, Y. Lv, W. Xiong, D. Zhu, L. Li, L. Gan, and M. Liu, Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon 168, 499 (2020).

    Article  CAS  Google Scholar 

  46. S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, J.C. Gao, and C.M. Li, Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 8, 1702545 (2018).

    Article  Google Scholar 

  47. J. Ai, S. Yang, Y. Sun, M. Liu, L. Zhang, D. Zhao, J. Wang, C. Yang, X. Wang, and B. Cao, Corncob cellulose-derived hierarchical porous carbon for high performance supercapacitors. J. Power Sour. 484, 229221 (2021).

    Article  CAS  Google Scholar 

  48. A. Gopalakrishnan, and S. Badhulika, Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power Sour. 480, 228830 (2020).

    Article  CAS  Google Scholar 

  49. Y. Li, D. Zhang, Y. Zhang, J. He, Y. Wang, K. Wang, Y. Xu, H. Li, and Y. Wang, Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors. J. Power Sour. 448, 227396 (2020).

    Article  CAS  Google Scholar 

  50. Y. Tan, Z. Xu, L. He, and H. Li, Three-dimensional high graphitic porous biomass carbon from dandelion flower activated by K2FeO4 for supercapacitor electrode. J. Energy Storage 52, 104889 (2022).

    Article  Google Scholar 

  51. S. Gadipelli, C.A. Howard, J. Guo, N.T. Skipper, H. Zhang, P.R. Shearing, and D.J.L. Brett, Superior multifunctional activity of nanoporous carbons with widely tunable porosity: enhanced storage capacities for carbon-dioxide, hydrogen, water, and electric charge. Adv. Energy Mater. 10, 1903649 (2020).

    Article  CAS  Google Scholar 

  52. J. Yang, Q. Tian, Y. Zhou, X.Y. Wang, and X.C. Zheng, Facile synthesis and superior capacitive behavior of cattail wool-derived hierarchical porous carbon. J. Electroanal. Chem. 882, 115025 (2021).

    Article  CAS  Google Scholar 

  53. X. Liu, C. Ma, Y. Wen, X. Chen, X. Zhao, T. Tang, R. Holze, and E. Mijowska, Highly efficient conversion of waste plastic into thin carbon nanosheets for superior capacitive energy storage. Carbon 171, 819 (2021).

    Article  CAS  Google Scholar 

  54. D. Xuan, J. Liu, D. Wang, Z. Lu, Q. Liu, Y. Liu, S. Li, and Z. Zheng, Facile preparation of low-cost and cross-linked carbon nanofibers derived from PAN/PMMA/lignin as supercapacitor electrodes. Energy Fuel 35, 796 (2020).

    Article  Google Scholar 

  55. Z. Luo, N. Lin, M. Sun, Y. Wang, and X. Zhu, Synthesis of 3D-interconnected hierarchical porous carbon from heavy fraction of bio-oil using crayfish shell as the biological template for high-performance supercapacitors. Carbon 173, 910 (2021).

    Article  CAS  Google Scholar 

  56. Z. Shang, X. An, H. Zhang, M. Shen, F. Baker, Y. Liu, L. Liu, J. Yang, H. Cao, Q. Xu, H. Liu, and Y. Ni, Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon 161, 62 (2020).

    Article  CAS  Google Scholar 

  57. B. Yang, D. Zhang, W. She, J. Wang, S. Gao, Y. Wang, and K. Wang, Remarkably improving the specific energy of supercapacitor based on a biomass-derived interconnected hierarchical porous carbon by using a newly-developed mixed alkaline aqueous electrolyte with widened operation voltage. J. Power Sour. 492, 229666 (2021).

    Article  CAS  Google Scholar 

  58. M. Cao, Q. Wang, W. Cheng, S. Huan, Y. Hu, Z. Niu, G. Han, H. Cheng, and G. Wang, A novel strategy combining electrospraying and one-step carbonization for the preparation of ultralight honeycomb-like multilayered carbon from biomass-derived lignin. Carbon 179, 68 (2021).

    Article  CAS  Google Scholar 

  59. G. Zhang, T. Guan, M. Cheng, Y. Wang, N. Xu, J. Qiao, F. Xu, Y. Wang, J. Wang, and K. Li, Harvesting honeycomb-like carbon nanosheets with tunable mesopores from mild-modified coal tar pitch for high-performance flexible all-solid-state supercapacitors. J. Power Sour. 448, 227446 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Ningxia Hui Autonomous Region (No.2022AAC03098), Key Research and Development Program of Ningxia Hui Autonomous Region (No.2021BEB04074), and the Sixth Group Youth Science and Technology Talents Project of Ningxia Hui Autonomous Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongtao Tan.

Ethics declarations

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1731 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Ren, Y., Xu, Z. et al. Highly Graphitized Porous Carbon Prepared from Biomass Waste Sunflower Shells for Supercapacitors. J. Electron. Mater. 52, 2603–2613 (2023). https://doi.org/10.1007/s11664-023-10223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10223-1

Keywords

Navigation