Skip to main content

Advertisement

Log in

A Comparative Investigation on Lithium Storage Performance of Carbon Microsphere Originated from Agriculture Bio-waste Materials: Sunflower Stalk and Walnut Shell

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

With the aggravation of environmental pollution and the reduction of fossil fuels, the need of developing green and environmentally sustainable energy materials is becoming urgent. Novel porous carbon microsphere materials derived from waste biomass sunflower steam and walnut shell were prepared based on acidolysis-hydrothermal method, and the morphology, structure and electrochemical performance of the products were characterized by scanning electron microscope, transmission electron microscopy, Raman, X-ray diffraction measurements, nitrogen adsorption, X-ray photoelectron spectroscopy, galvanostatic charge–discharge, cyclic voltammograms and electrochemical impedance spectroscopy. Different electrochemical performance for Li-ion storage was demonstrated owing to the variation of physical property and electrode interface behavior. As an anode material for lithium-ion batteries, the carbon material derived from walnut shell exhibits higher initial coulombic efficiency, cycling stability and rate performance. It can retain charge capacity of 235.3 mAh g−1 after 50 cycles, which is obviously higher than that of carbon microsphere from sunflower steam, 145.9 mAh g−1, and the capacity retention of walnut shell material is 2.5 times that of sunflower steam. It is believed that the superior electrochemical performance may be attributed to the higher graphitization degree and larger pore path of walnut shell-derived carbon materials with average particle size of 3–5 μm, and higher conductivity of SEI film formed on the surface of electrode, which can enhance the conductivity of bulk material and accelerate the migration of lithium ion through bulk material and electrode/electrolyte interface.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Xu, F., Jin, S.B., Zhong, H., Wu, D.C., Yang, X.Q., Chen, X., Wei, H., Fu, R.W., Jiang, D.L.: Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep. 5, 8225–8230 (2015). https://doi.org/10.1038/srep08225

    Article  Google Scholar 

  2. Wang, S.Q., Lu, X., Yu, L., Zhang, L., Wang, H.H., Lou, X.W.: Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 6, 1502217–1502222 (2016). https://doi.org/10.1002/aenm.201502217

    Article  Google Scholar 

  3. Li, Y.M., Wang, Z.G., Li, L.L., Peng, S.J., Zhang, L., Srinivasan, M., Ramakrishna, S.: Preparation of nitrogen-and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon 99, 556–563 (2016). https://doi.org/10.1016/j.carbon.2015.12.066

    Article  Google Scholar 

  4. Xing, Z.G., Ju, Z.C., Zhao, Y.L., Wan, J.L., Zhu, Y.B., Qiang, Y.H., Qian, Y.T.: One-pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci. Rep. 6, 26146–26155 (2016). https://doi.org/10.1038/srep26146

    Article  Google Scholar 

  5. Zou, Y., Cai, C.L., Xiang, C.L., Huang, P.R., Chu, H.L., She, Z., Xu, F., Sun, L.X., Kraatz, H.B.: Simple synthesis of core-shell structure of Co–Co3O4@carbon-nanotube-incorporated nitrogen-doped carbon for high-performance supercapacitor. Electrochim. Acta 261, 537–547 (2018). https://doi.org/10.1016/j.electacta.2017.12.184

    Article  Google Scholar 

  6. Cai, C.L., Zou, Y.J., Xiang, C.L., Chu, H.L., Qiu, S.J., Sui, Q.L., Xu, F., Sun, L.X., Shah, A.: Broccoli-like porous carbon nitride from ZIF-8 and melamine for high performance supercapacitors. Appl. Surf. Sci. 440, 47–54 (2018). https://doi.org/10.1016/j.apsusc.2017.12.242

    Article  Google Scholar 

  7. Guo, W., Li, X., Xu, J.T., Liu, H.K., Ma, J.M., Dou, S.X.: Growth of highly nitrogen-doped amorphous carbon for lithium-ion battery anode. Electrochim. Acta 188, 414–420 (2016). https://doi.org/10.1016/j.electacta.2015.12.045

    Article  Google Scholar 

  8. Katchala, N., Bulusu, S.V., Varadaraju, U.V., Tata, N.R., Srinivasan, A.: One step synthesized hierarchical spherical porous carbon as an efficient electrode material for lithium ion battery. Mater. Lett 237, 156–160 (2019). https://doi.org/10.1016/j.matlet.2018.11.084

    Article  Google Scholar 

  9. Lu, P., Sun, Y., Xiang, H.F., Liang, X., Yu, Y.: 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy Mater. 8, 1702434–1702441 (2018). https://doi.org/10.1002/aenm.201702434

    Article  Google Scholar 

  10. Liu, T., Luo, R.Y., Qiao, W.M., Yoon, S.H., Mochida, I.: Microstructure of carbon derived from mangrove charcoal and its application in Li-ion batteries. Electrochim. Acta 55, 1696–1700 (2010). https://doi.org/10.1016/j.electacta.2009.10.051

    Article  Google Scholar 

  11. Yu, X.L., Zhang, K.Y., Tian, N., Qin, A.M., Liao, L., Du, R., Wei, C.: Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries. Mater. Lett. 142, 193–196 (2015). https://doi.org/10.1016/j.matlet.2014.11.160

    Article  Google Scholar 

  12. Li, Y., Wang, F.Y., Liang, J.C., Hu, X.Y., Yu, K.F.: Preparation of disordered carbon from rice husks for lithium-ion batteries. New J. Chem. 40, 325–329 (2016). https://doi.org/10.1039/c5nj01970b

    Article  Google Scholar 

  13. Li, Y., Li, C., Qi, H., Yu, K.F., Li, X.J.: Formation mechanism and characterization of porous biomass carbon for excellent performance lithium-ion batteries. RSC Adv. 8, 12666–12671 (2018). https://doi.org/10.1039/c8ra02002g

    Article  Google Scholar 

  14. Mondal, A.K., Kretschmer, K., Zhao, Y.F., Liu, H., Wang, C.Y., Sun, B., Wang, G.X.: Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries. Chem. Eur. J. 23, 3683–3690 (2017). https://doi.org/10.1002/chem.201605019

    Article  Google Scholar 

  15. Unur, E., Brutti, S., Panero, S., Scrosati, B.: Nanoporous carbons from hydrothermally treated biomass as anode materials for lithium ion batteries. Microporous Mesoporous Mater. 174, 25–33 (2013). https://doi.org/10.1016/j.micromeso.2013.02.032

    Article  Google Scholar 

  16. Wang, Q., Li, H., Chen, L.Q., Huang, X.J.: Monodispersed hard carbon spherules with uniform nanopores. Carbon 39, 2211–2214 (2001). https://doi.org/10.1016/S0008-6223(01)00040-9

    Article  Google Scholar 

  17. Yang, K., Gao, Q.M., Tan, Y.L., Tian, W.Q., Qian, W.W., Zhu, L.H., Yang, C.X.: Biomass-derived porous carbon with micropores and small mesopores for high-performance lithium-sulfur batteries. Chem. Eur. J. 22, 3239–3244 (2016). https://doi.org/10.1002/chem.201504672

    Article  Google Scholar 

  18. Li, Y.M., Hu, Y.S., Titirici, M.M., Chen, L.Q., Huang, X.J.: Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 6, 1600659–1600667 (2016). https://doi.org/10.1002/aenm.201600659

    Article  Google Scholar 

  19. Xu, G.Y., Han, J.P., Ding, B., Nie, P., Pan, J., Dou, H., Li, H.S., Zhang, X.G.: Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 17, 1668–1674 (2015). https://doi.org/10.1039/C4GC02185A

    Article  Google Scholar 

  20. Zhou, Y., Wang, D.L., Xiao, N., Hou, Y.C., Qiu, J.S.: Influence of heat treatment temperature on the structure and electrochemical performance of asphaltene-based B/N co-doped porous carbons. Acta Phys. Chim. Sin. 30, 1127–1133 (2014). https://doi.org/10.3866/PKU.WHXB201404013

    Article  Google Scholar 

  21. Genovese, M., Jiang, J.H., Lian, K., Holm, N.: High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob. J. Mater. Chem. A 3, 2903–2913 (2015). https://doi.org/10.1039/C4TA06110A

    Article  Google Scholar 

  22. Sun, L., Tian, C.G., Li, M.T., Meng, X.Y., Wang, L., Wang, R.H., Yin, J., Fu, H.G.: From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 1, 6462–6470 (2013). https://doi.org/10.1039/C3TA10897J

    Article  Google Scholar 

  23. Zhao, H.J., Wang, Q.J., Deng, Y.H., Shi, Q., Qian, Y., Wang, B.B., Lȕ, L., Qiu, X.Q.: Preparation of renewable lignin-derived nitrogen-doped carbon nanospheres as anodes for lithium-ion batteries. RSC Adv. 6, 77143–77150 (2016). https://doi.org/10.1039/C6RA17793J

    Article  Google Scholar 

  24. Román, S., Nabais, J.M.V., Laginhas, C., Ledesma, B., González, J.F.: Hydrothermal carbonization as an effective way of densifying the energy content. Fuel Process. Technol. 103, 78–83 (2012). https://doi.org/10.1016/j.fuproc.2011.11.009

    Article  Google Scholar 

  25. Yi, Z.H., Liang, Y.G., Lei, X.F., Wang, C.W., Sun, J.T.: Low-temperature synthesis of nanosized disordered carbon spheres as an anode material for lithium ion batteries. Mater. Lett. 61, 4199–4203 (2007). https://doi.org/10.1016/j.matlet.2007.01.054

    Article  Google Scholar 

  26. Xia, K.S., Gao, Q., Jiang, J.H., Hu, J.: Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46, 1718–1726 (2008). https://doi.org/10.1016/j.carbon.2008.07.018

    Article  Google Scholar 

  27. Tao, L., Huang, Y.B., Yang, X.Q., Zheng, Y.W., Liu, C., Di, M.W., Zheng, Z.F.: Flexible anode materials for lithium-ion batteries derived from waste biomass-based carbon nanofibers. RSC Adv. 8, 7102–7109 (2018). https://doi.org/10.1039/C7RA13639K

    Article  Google Scholar 

  28. Zhang, S.S.: A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162, 1379–1394 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.074

    Article  Google Scholar 

  29. Li, S.W., Liu, Y., Zhou, J.W., Hong, S.S., Dong, Y., Wang, J.M., Gao, X., Qi, P.F., Han, Y.Z., Wang, B.: Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li–CO2 batteries. Energy Environ. Sci. 12, 1046–1054 (2019). https://doi.org/10.1039/c8ee03283a

    Article  Google Scholar 

  30. Liao, L.X., Zuo, P.J., Ma, Y.L., An, Y.X., Yin, G.P., Gao, Y.Z.: Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode. Electrochim. Acta 74, 260–266 (2012). https://doi.org/10.1016/j.electacta.2012.04.085

    Article  Google Scholar 

  31. Wang, J.G., Liu, H.Z., Sun, H.H., Hua, W., Wang, H.W., Liu, X.R., Wei, B.Q.: One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018). https://doi.org/10.1016/j.carbon.2017.10.084

    Article  Google Scholar 

  32. Yu, X.Y., Wang, Y.M., Cai, H., Shang, C., Liu, Y.C., Wang, Q.: Enhancing the stability of high-voltage lithium-ion battery by using sulfur-containing electrolyte additives. Ionics (2019). https://doi.org/10.1007/s11581-019-02925-6

    Article  Google Scholar 

  33. Liu, Y.X., Wang, X., Zhang, Y.C., Zhang, C., Luo, L.B., Lai, W.C., Li, Y.L., Liu, X.Y.: In-situ generation of hydrated nanoparticles on commercial stainless steel mesh for durable superhydrophilicity and self-cleaning. Mater. Des. 157, 284–293 (2018). https://doi.org/10.1016/j.matdes.2018.07.055

    Article  Google Scholar 

  34. Fey, G.T.K., Cho, Y.D., Chen, C.L., Lin, Y.Y., Kumar, T.P., Chan, S.H.: Pyrolytic carbons from acid/base-treated rice husk as lithium-insertion anode materials. Pure Appl. Chem. 82, 2157–2165 (2010). https://doi.org/10.1351/PAC-CON-09-11-35

    Article  Google Scholar 

  35. Han, S.W., Jung, D.W., Jeong, J.H., Oh, E.S.: Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem. Eng. J. 254, 597–604 (2014). https://doi.org/10.1016/j.cej.2014.06.021

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the financial support from the Natural Science Foundation of China (51602046), Fundamental Research Funds for the Central Universities (2572018BC30, 2572015CB23), China Postdoctoral Science Foundation (2014M561312) and Heilongjiang Postdoctoral Foundation (LBH-Z14003, LBH-Z14014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixia Liao or Bin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, T., Yu, X., Zhang, X. et al. A Comparative Investigation on Lithium Storage Performance of Carbon Microsphere Originated from Agriculture Bio-waste Materials: Sunflower Stalk and Walnut Shell. Waste Biomass Valor 11, 6981–6992 (2020). https://doi.org/10.1007/s12649-019-00927-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00927-z

Keywords

Navigation