Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Investigating the Influence of Cu-Doped BaFe12O19 on Physical and Optical Behavior of Its Nanocomposites with CoZnFe2O4

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

This article was retracted on 04 May 2023

This article has been updated

Abstract

In this report, we describe how copper-doped barium hexaferrite (CBM) influences the structure, elasticity, morphology, composition, and optical behavior in cobalt zinc ferrite (CZF) [(x)%CBM + (100-x)%CZF with x = 90, 80, 70 and 60] nanocomposites prepared by physical mixing. Analysis of the composites is performed using XRD, SEM, EDAX, FTIR, UV, and, PL. XRD confirms the formation of hexagonal and spinel structures along with their other structural parameters. Elastic parameters and Debye temperature are measured using FTIR. Young’s modulus of 90%CBM + 10%CZF shows that the material can be used for shielding applications as well as in high-density optical storage devices. The morphology, particle size distribution, and comparison between crystalline and particle size of the composite are studied by SEM. The purity of the composite produced is analyzed using EDAX studies. From the UV analysis, the optical measurements of the manufactured composite such as transmission, absorption, refractive index, and Urbach energy were analyzed. Both the direct and indirect band gap energies increase with decreasing CBM in the composite. Among all the observed composites, 60%CBM + 40%CZF is found to be a suitable candidate for a visible-light active photocatalyst. The overall structural and optical properties also prove that the material can be used in tunable photonic applications. The refractive index of the composite is between 3.2 and 3.4, which can be used for photo-electrochemical cells, optical detectors, or reflectors. The optical band gap determined by UV–Vis spectroscopy was verified using PL spectra, which shows semiconducting properties that can be exploited in optoelectronic devices, photocatalysts, and sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. R.C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Progress Mater. Sci. 57, 1191–1334 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001.

    Article  CAS  Google Scholar 

  2. D.A. Vinnik, V.E. Zhivulin, A.Y. Starikov, S.A. Gudkova, E.A. Trofimov, A.V. Trukhanov, and A.L. Kozlovsky, Influence of titanium substitution on structure, magnetic and electric properties of barium hexaferrites BaFe12-xTixO19. J. Magn. Magn. Mater. 498, 166117 (2020). https://doi.org/10.1016/j.jmmm.2020.166544.

    Article  CAS  Google Scholar 

  3. M. Hähsler, M. Zimmermann, S. Heißler, and S. Behrens, Sc-doped barium hexaferrite nanodiscs: Tuning morphology and magnetic properties. J. Magn. Magn. Mater. 500, 166349 (2020). https://doi.org/10.1016/j.jmmm.2019.166349.

    Article  CAS  Google Scholar 

  4. D. Roy, C. Shivakumara, and P. Kumar, A observation of the exchange spring behavior in hard–soft-ferrite nanocomposite. J. Magn. Magn. Mater. 321, L11–L14 (2009). https://doi.org/10.1016/j.jmmm.2008.09.017.

    Article  CAS  Google Scholar 

  5. N.A. Algarou, Y. Slimani, M.A. Almessiere, A. Sadaqat, A.V. Trukhanov, M.A. Gondal, A.S. Hakeem, S.V. Trukhanov, M.G. Vakhitov, D.S. Klygach, A. Manikandan, and A. Baykal, Functional Sr0.5Ba0.5Sm0.02Fe11.98O4/x(Ni0.8Zn0.2Fe2O4) Hard-Soft Ferrite Nanocomposites: Structure. Magnetic and Microwave Properties. Nanomaterials 10, 2134 (2020). https://doi.org/10.3390/nano10112134.

    Article  CAS  Google Scholar 

  6. M.A. Almessiere, Y. Slimani, A.V. Trukhanov, A. Sadaqat, A. Demir Korkmaz, N.A. Algarou, H. Aydın, and A. Baykal, MS Toprak Review on functional bi-component nanocomposites based on hard/soft ferrites: Structural, magnetic, electrical and microwave absorption properties. Nano-Struct. Nano-Obj. 26, 100728 (2021). https://doi.org/10.1016/j.nanoso.2021.100728.

    Article  CAS  Google Scholar 

  7. G. Florio, Structural features of magnetic materials, in A.-G. Olabi (ed.), Encyclopedia of Smart Materials, Elsevier, 2022, https://doi.org/10.1016/B978-0-12-815732-9.00095-4

  8. N. Kumari, S. Kour, G. Singh, R. K. Sharma, A brief review on synthesis, properties and applications of ferrites. In AIP Conference Proceedings 2220, (2020): 020164 https://doi.org/10.1063/5.0001323

  9. E. Casbeer, V.K. Sharma, and X.Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: A review. Sep. Purif. Technol. 87, 1–14 (2012). https://doi.org/10.1016/j.seppur.2011.11.034.

    Article  CAS  Google Scholar 

  10. N. Sukhleen and P. Kunal, Nickel spinel ferrites: a review. J. Magn. Magn. Mater. 519, 167163 (2021). https://doi.org/10.1016/j.jmmm.2020.167163.

    Article  CAS  Google Scholar 

  11. H. Qin, Y. He, P. Xu, D. Huang, Z. Wang, H. Wang, and C. Wang, Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Adv. Colloid Interface Sci. 294, 102486 (2021). https://doi.org/10.1016/j.cis.2021.102486.

    Article  CAS  Google Scholar 

  12. A. Hajalilou and S.A. Mazlan, A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties. Appl. Phys. A 122, 1–15 (2016). https://doi.org/10.1007/s00339-016-0217-2.

    Article  CAS  Google Scholar 

  13. A. Houbi, Z.A. Aldashevich, Y. Atassi, Z.B. Telmanovna, M. Saule, and K. Kubanych, Microwave absorbing properties of ferrites and their composites: A review. J. Magn. Magn. Mater. 529, 167839 (2021). https://doi.org/10.1016/j.jmmm.2021.167839.

    Article  CAS  Google Scholar 

  14. P. Thakur, S. Taneja, D. Sindhu, U. Lüders, A. Sharma, B. Ravelo, and A. Thakur, Manganese zinc ferrites: a short review on synthesis and characterization. J. Supercond. Nov. Magn. 33, 1569–1584 (2020). https://doi.org/10.1007/s10948-020-05489-z.

    Article  CAS  Google Scholar 

  15. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, and A. Thakur, A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. 46, 15740–15763 (2020). https://doi.org/10.1016/j.ceramint.2020.03.287.

    Article  CAS  Google Scholar 

  16. P.A. Vinosha, A. Manikandan, A.S.J. Ceicilia, A. Dinesh, G.F. Nirmala, A.C. Preetha, and B. Xavier, Review on recent advances of zinc substituted cobalt ferrite nanoparticles: Synthesis characterization and diverse applications. Ceramics Int. 47, 10512–10535 (2021). https://doi.org/10.1016/j.ceramint.2020.12.289.

    Article  CAS  Google Scholar 

  17. P.A. Vinosha, A. Manikandan, A.C. Preetha, A. Dinesh, Y. Slimani, M.A. Almessiere, and G. Nirmala, Review on recent advances of synthesis, magnetic properties, and water treatment applications of cobalt ferrite nanoparticles and nanocomposites. J. Superconduct. Novel Magn. 34, 995–1018 (2021). https://doi.org/10.1007/s10948-021-05854-6.

    Article  CAS  Google Scholar 

  18. P.P. Bardapurkar, S.S. Shewale, S.A. Arote, S.S. Pansambal, and N.P. Barde, Effect of precursor pH on structural, magnetic and catalytic properties of CoFe2O4@SiO2 green nanocatalyst. Res. Chem. Intermed 47, 1919–1939 (2021). https://doi.org/10.1007/s11164-020-04366-7.

    Article  CAS  Google Scholar 

  19. S. Kumar, S. Guha, S. Supriya, L.K. Pradhan, and M. Kar, Correlation between crystal structure parameters with magnetic and dielectric parameters of Cu-Doped barium hexaferrite. J. Magn. Magn. Mater. 499, 166213 (2020). https://doi.org/10.1016/j.jmmm.2019.166213.

    Article  CAS  Google Scholar 

  20. J. Feng, R. Xiong, Y. Liu, Su. Fangyi, and X. Zhang, Preparation of cobalt substituted zinc ferrite nanopowders via auto-combustion route: an investigation to their structural and magnetic properties. J. Mater. Sci. Mater. Electron. 29, 18358–18371 (2018). https://doi.org/10.1007/s10854-018-9950-y.

    Article  CAS  Google Scholar 

  21. T. Munawar, F. Iqbal, S. Yasmeen, K. Mahmood, and A. Hussain, Multi metal oxide NiO-CdO-ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram. Int. 46, 2421–2437 (2020). https://doi.org/10.1016/j.ceramint.2019.09.236.

    Article  CAS  Google Scholar 

  22. D. Guruvammal, S. Selvaraj, and S. MeenakshiSundar, Structural, optical and magnetic properties of Co doped ZnO DMS nanoparticles by microwave irradiation method. J. Magn. Magn. Mater. 452, 335 (2018). https://doi.org/10.1016/j.jmmm.2017.12.097.

    Article  CAS  Google Scholar 

  23. S.K. Paswan, S. Kumari, M. Kar, A. Singh, H. Pathak, J.P. Borah, and L. Kumar, Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. J. Phys. Chem. Solids 151, 109928 (2021). https://doi.org/10.1016/j.jpcs.2020.109928.

    Article  CAS  Google Scholar 

  24. M.A. Eid, A.A. El-Helaly, M.Y. El-Sheikh, H.A. El-Daly, and A.H. Gemeay, Synthesis, characterization, and antimicrobial activities of CuxFe3-xO4/PANI nanocomposites. Egypt. J. Microbiol. (2022). https://doi.org/10.21608/ejm.2022.116185.1206.

    Article  Google Scholar 

  25. K.K. Khichar, S.B. Dangi, V. Dhayal, U. Kumar, S.Z. Hashmi, V. Sadhu, and P.A. Alvi, Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites. Polym. Compos. 41, 2792–2802 (2020). https://doi.org/10.1002/pc.25576.

    Article  CAS  Google Scholar 

  26. V.R. Akshay, B. Arun, G. Mandal, and M. Vasundhara, Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO2 nanocrystals derived by a sol–gel method. Phys. Chem. Chem. Phys. 21, 12991–13004 (2019). https://doi.org/10.1039/C9CP01351B.

    Article  CAS  Google Scholar 

  27. Lu. Zhang, S. Han, Y. Li, S. Yang, X. Zhao, and J. Liu, Effect of magnesium on the crystal transformation and electrochemical properties of A2B7-type metal hydride alloys. J. Electrochem. Soc. 161, A1844 (2014). https://doi.org/10.1149/2.0641412jes.

    Article  CAS  Google Scholar 

  28. E. Nurfani, A. Lailani, W. Kesuma, M. Anrokhi, G. Kadja, and M. Rozana, UV sensitivity enhancement in Fe-doped ZnO films grown by ultrafast spray pyrolysis. Opt. Mater. 112, 110768 (2021). https://doi.org/10.1016/j.optmat.2020.110768.

    Article  CAS  Google Scholar 

  29. N.P. Barde, S.S. Shewale, P.S. Solanki, N.A. Shah, and P.P. Bardapurkar, Effect of silica matrix on structural, optical and electrical properties of Li0.5Fe2.5O4 nanoparticles. Scripta Mater. 194, 113712 (2021). https://doi.org/10.1016/j.scriptamat.2020.113712.

    Article  CAS  Google Scholar 

  30. M. Kalyan Raju, FT-IR studies of Cu substituted Ni-Zn ferrites for structural and vibrational investigations. Chem. Sci. Trans. 4, 137–142 (2015). https://doi.org/10.7598/cst2015.957.

    Article  CAS  Google Scholar 

  31. Q. Zhang, Z. Xia, Y.-B. Cheng, and Gu. Min, High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites. Nat. Commun. 9, 1183 (2018). https://doi.org/10.1038/s41467-018-03589-y.

    Article  CAS  Google Scholar 

  32. M.K. Manglam, S.N. Rout, S. Kumari, S. Kumar, and M. Kar, Structural, magnetic and optical properties of (0.45) Ni0.5Zn0.5Fe2O4+(055) BaFe12O19 composite. Mater. Today Proc. 57, 418–421 (2022). https://doi.org/10.1016/j.matpr.2021.12.431.

    Article  CAS  Google Scholar 

  33. P.P. Bardapurkar, S.N. Dalvi, V.D. Joshi, P.S. Solanki, V.R. Rathod, N.A. Shah, and N.P. Barde, Effect of silica matrix on structural and optical properties of cobalt ferrite nanoparticles. Results Surf. Interfaces 8, 100081 (2022). https://doi.org/10.1016/j.rsurfi.2022.100081.

    Article  Google Scholar 

  34. N.M. Ravindra, P. Ganapathy, and J. Choi, Energy gap–refractive index relations in semiconductors–an overview. Infrared Phys. Technol. 50, 21–29 (2007). https://doi.org/10.1016/j.infrared.2006.04.001.

    Article  CAS  Google Scholar 

  35. M.N. Mehathaj, N. Padmanathan, and E. Sivasenthil, Doping catalysed unintentional hydrogenation effect on the structural, optical and magnetic properties of Co-doped ZnO semiconductor nanoparticles. J. Mater. Sci Mater. Electron. 33, 11523–11541 (2022). https://doi.org/10.1007/s10854-022-08126-8.

    Article  CAS  Google Scholar 

  36. T.M. Hammad, J.K. Salem, A.A. Amsha, and N.K. Hejazy, Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method. J. Alloys Compound. 741, 123–130 (2018). https://doi.org/10.1016/j.jallcom.2018.01.123.

    Article  CAS  Google Scholar 

  37. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, and S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Mater. Solar Cells 90, 1773–1787 (2006). https://doi.org/10.1016/j.solmat.2005.11.007.

    Article  CAS  Google Scholar 

  38. J.G. Yu, H.G. Yu, B. Cheng, X.J. Zhao, J.C. Yu, and W.K. Ho, The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B 107, 13871–13879 (2003). https://doi.org/10.1021/jp036158y.

    Article  CAS  Google Scholar 

  39. H.Q. Jiang, P. Wang, X.L. Guo, and H.Z. Xian, Preparation and characterization of low-amount Yb3+-doped TiO2 photocatalyst. Russ. Chem. Bull. 55, 1743–1747 (2006). https://doi.org/10.1007/s11172-006-0482-x.

    Article  CAS  Google Scholar 

  40. S. Allwin, S. Ashwin, and E. Sivasenthil, Multifunctionality of AlBaFe12O19/CoZnFe2O4 hybrid nanocomposite: Promising structural, elastic, morphological, compositional, optical, and magnetic properties. J. Phys. Chem. Solids. 174, 111134 (2023). https://doi.org/10.1016/j.jpcs.2022.111134

  41. A. N. Kadam, J. Lee, S. V. Nipane, S. W. Lee, Nanocomposites for visible light photocatalysis. In Nanostructured Materials for Visible Light Photocatalysis (pp. 295-317) 20222. Elsevier. https://doi.org/10.1016/B978-0-12-823018-3.00017-8

  42. M. Hadi, K.M. Batoo, A. Chauhan, O.M. Aldossary, R. Verma, and Y. Yang, Tuning of structural, dielectric, and electronic properties of Cu doped Co–Zn ferrite nanoparticles for multilayer inductor chip applications. Magnetochemistry 7, 53 (2021). https://doi.org/10.3390/magnetochemistry7040053.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to our President, Chancellor, Chief Executive Officer, Vice-Chancellor, and Registrar of Karpagam Academy of Higher Education, Coimbatore, India, for providing facilities and encouragement.

Funding

The authors declare that no funds, grants, or other support were received for this work.

Author information

Authors and Affiliations

Authors

Contributions

AS: Conceptualization, methodology, materials preparation, characterization, writing—original draft. AS: formal analysis, writing—review, and editing. SE: supervision, investigation, resources. All authors read and approved the final manuscript.

Corresponding author

Correspondence to E. Sivasenthil.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s11664-023-10477-9

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudhakaran, A., Sudhakaran, A. & Sivasenthil, E. RETRACTED ARTICLE: Investigating the Influence of Cu-Doped BaFe12O19 on Physical and Optical Behavior of Its Nanocomposites with CoZnFe2O4. J. Electron. Mater. 52, 2312–2328 (2023). https://doi.org/10.1007/s11664-022-10114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10114-x

Keywords

Navigation