Skip to main content
Log in

High-Gain Low-Profile EBG Resonator Antenna Based on Quasi-Icosahedral Shapes

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Studying the geometry of electromagnetic band gap (EBG) structures in 1 and 3 dimensions is useful for achieving effective directional radiation, high gain, and side-lobe attenuation of antennae. This paper presents an EBG antenna, whose radiating source is a rectangular notched patch, which can be used for applications around 20 GHz. Two conventional woodpile dielectric structures with a triangular lattice are presented in a comparative study to extract the best physical and electromagnetic performance in terms of directivity, bandwidth, and gain; these are the square and the cylindrical rods. These two structures’ electromagnetic and geometrical limits allow the design of a 3D EBG structure called an icosahedral structure. The proposed antenna is composed of different ceramic substrates (the Arlon AR 450, (h = 0.48 mm, ɛr = 4.5, El Tand = 0.0035) on which the radiating element is placed, the Rogers TMM 13i, (ɛr = 12.85, El Tand = 0.0019) for the 3D icosahedral structure; and the Taconic TLY-5A, (ɛr = 2.17, El Tand = 0.0009) for the 1D lateral walls). With a substrate-plated radiation source coupled with a 3D icosahedral structure and surrounded by a vertically mounted 1D structure, a directivity of 19 dBi was obtained with a realized gain of 17.7 dB and an optimal coupling (antenna–EBG material) at 19.8 GHz. These results are encouraging given the antenna size of 33.41 × 27.87 × 37.36 mm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M.N. Elsheakh, A. Dalia, Hala Elsadek, A. Esmat Abdallah, Antenna designs with electromagnetic band gap structures, Metamaterial. Retrieved from November. 8:p. 2015. (2012)

  2. Faruque, Mohammad Rashed I., Mohammad Tariqul Islam, and Norbahiah Misran, Evaluation of EM absorption in human head with metamaterial attachment. The Applied Computational Electromagnetics Society Journal (ACES): p. 1097. (2010).

  3. Yang Fan, Yahya Rahmat Samii (2009) Electromagnetic band gap structures in antenna engineering. Cambridge University Press, Cambridge

  4. Ziolkowski, W. Richard and Nader Engheta, Introduction, history, and selected topics in fundamental theories of metamaterials. Metamaterials: Physics and Engineering Explorations: p. 1. (2006).

  5. Salah Toubeh, Moustapha, Etude d’antennes BIE planaires de hauteur très inférieure à la longueur d’onde dite: The ULP EBG Antennas. (2011).

  6. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).

    Article  CAS  Google Scholar 

  7. E. Yablonovitch, Photonic band-gap crystals. J. Phys.: Condensed Matter 5, 2443 (1993).

    Google Scholar 

  8. A. Polman, and P. Wiltzius, Materials science aspects of photonic crystals. MRS Bull. 26, 608 (2001).

    Article  CAS  Google Scholar 

  9. E. Yablonovitch, Photonic band-gap structures. JOSA B. 10, 283 (1993).

    Article  CAS  Google Scholar 

  10. P.R. Villeneuve, and M. Piché, Photonic band gaps in two-dimensional square lattices: square and circular rods. Phys. Rev. B 46, 4973 (1992).

    Article  CAS  Google Scholar 

  11. K.M. Ho, C.T. Chan, M. Costas Soukoulis, R. Biswas, and M. Sigalas, Photonic band gaps in three dimensions: New layer-by-layer periodic structures. Solid State Commun. 89, 413 (1994).

    Article  CAS  Google Scholar 

  12. A. Raveendran, Mailadil Thomas Sebastian, and Sujith Raman, Applications of microwave materials: a review. J. Electron. Mater. 48, 2601 (2019).

    Article  CAS  Google Scholar 

  13. P. Maagt de, R. Gonzalo, C.Y. Vardaxoglou, J.M. Baracco (2003) Electromagnetic bandgap antennas and components for microwave and sub millimeter wave applications. IEEE Trans. Antennas Propag. 51(10):2667

  14. M. Abdel-Rahman, M. Osama Haraz, N. Ashraf, M.F. Zia, U. Khaled, I. Elsahfiey, S. Alshebeili, and A.R. Sebak, Properties of silica-based aerogel substrates and application to c-band circular patch antenna. J. Electron. Mater. 47, 2025 (2018).

    Article  CAS  Google Scholar 

  15. Aggarwal, Ishita, Sujata Pandey, Malay Ranjan Tripathy, and Ashok Mittal, A compact high gain metamaterial-based antenna for terahertz applications. Journal of Electronic Materials: p. 1. (2022).

  16. S. Pandit, Low-profile high-gain slot antenna using polarization-and incident-angle-insensitive metamaterial. J. Electron. Mater. 51, 1322 (2022).

    Article  CAS  Google Scholar 

  17. J.P.D. Abboud and A. Papiernik, Rectangular microstrip antenna for CAD. IEEE Proceedings. 135. (1988).

  18. E. Newman, and P. Tulyathan, Analysis of microstrip antennas using moment methods. IEEE Trans. Anten. Propag. 29, 47 (1981).

    Article  Google Scholar 

  19. H. Yi, and K. Boyle, Antennas: From Theory to Practice (Hoboken: Wiley, 2008).

    Google Scholar 

  20. Yi. Huang, Antennas: From Theory to Practice (Hoboken: Wiley, 2021).

    Google Scholar 

  21. A. Balanis, Constantine, Antenna Theory: Analysis and Design (Hoboken: Wiley, 2015).

    Google Scholar 

  22. R. Ludwig, and P. Bretchko, RF Circuit Design Theory and Applications (US: Prentice-Hall, 2000).

    Google Scholar 

  23. A. Balanis, Constantine (Wiley, Hoboken: Advanced engineering electromagnetics, 1999).

    Google Scholar 

  24. P. Bhartia, K.V.S. Rao, and R.S. Tomar, Millimeter-wave microstrip and printed circuit antennas (New York: Artech House Antenna Library, 1991).

    Google Scholar 

  25. T.C. Edwards, and M.B. Steer, Foundations of interconnect and microstrip design (Hoboken: Wiley, 2000).

    Book  Google Scholar 

  26. R. Garg, J. Prakash Bhartia, I. Bahl, and A. Ittipiboon, Microstrip antenna design handbook (New York: Artech house, 2001).

    Google Scholar 

  27. Wu, Te-Kao, Frequency selective surfaces. Encyclopedia RF Microwave Engineering. (1995).

  28. P. Kamphikul, P. Krachodnok, and R. Wongsan, High-gain antenna for base station using MSA and triangular EBG cavity. (2012).

  29. Lee, Yoonjae, Xuesong Lu, Yang Hao, Shoufeng Yang, R. G. Julian Evans, and G. Clive Parini, Directive millimetrewave antennas using freeformed ceramic metamaterials in planar and cylindrical forms. IEEE Antennas and Propagation Society International Symposium. (2008).

  30. F. Frezza, L. Pajewski, and G. Schettini, Full-wave characterization of three-dimensional photonic bandgap structures. IEEE Trans. Nanotechnol. 5, 545 (2006).

    Article  Google Scholar 

  31. F. Frezza, L. Pajewski, and G. Schettini, Characterization and design of two-dimensional electromagnetic band-gap structures by use of a full-wave method for diffraction gratings. IEEE Trans. Microw. Theory Tech. 51, 941 (2003).

    Article  Google Scholar 

  32. A. Yariv, and P. Yeh, Optical waves in crystals, Vol. 5 (New York: Wiley, 1984).

    Google Scholar 

  33. M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, Directive photonic-bandgap antennas. IEEE Trans. Microw. Theory Tech. 47, 2115 (1999).

    Article  Google Scholar 

  34. Thévenot, Marc, Analyse comportementale et conception des matériaux diélectriques à Bande Interdite Photonique: Application à l'étude et à la conception de nouveaux types d'antennes. (1999).

  35. J.S. Colburn, and Y. Rahmat-Samii, Patch antennas on externally perforated high dielectric constant substrates IEEE Trans. Antennas Propag. 47, 1785 (1999).

    Article  Google Scholar 

  36. Huitema, Laure, Conception d’antennes miniatures à base de matériaux innovants pour systèmes de communications mobiles. (2011).

  37. Chantalat, Régis, Optimisation d'un réflecteur spatial à couverture cellulaire par l'utilisation d'une antenne à bande interdite électromagnétique multisources. (2003).

  38. C. Cheype, C. Serier, M. Thèvenot, T. Monédière, A. Reineix, and B. Jecko, An electromagnetic bandgap resonator antenna. IEEE Trans. Antennas Propag. 50, 1285 (2002).

    Article  Google Scholar 

  39. C. Serier, C. Cheype, R. Chantalat, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, 1-D photonic bandgap resonator antenna. Microw. Opt. Technol. Lett. 29, 312 (2001).

    Article  Google Scholar 

  40. R. Sauleau, Fabry-Perot resonators (Hoboken: Encyclopedia of RF and microwave engineering. Wiley, 2005).

    Book  Google Scholar 

  41. R. Lian, Z. Tang, and Y. Yin, Design of a broadband polarization-reconfigurable Fabry-Perot resonator antenna. IEEE Antennas Wirel. Propag. Lett. 17, 122 (2017).

    Article  Google Scholar 

  42. Q. Scrantom, Charles LTCC Technology: Where we are and where we’re Going, in MCM C/Mixed Technologies and Thick Film Sensors (Berlin: Springer, 1995).

    Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to all the persons who have contributed directly or indirectly to the realization of this work. Special thanks to all the staff of the LINS Laboratory of Bab Ezzouar and the Faculty of Electronics of the USTHB for their help and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Hadj Sadok.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadj Sadok, M., Lamhene, Y. & Berkani, S. High-Gain Low-Profile EBG Resonator Antenna Based on Quasi-Icosahedral Shapes. J. Electron. Mater. 52, 140–152 (2023). https://doi.org/10.1007/s11664-022-10046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10046-6

Keywords

Navigation