Skip to main content
Log in

A quad-band fractal antenna with metamaterial resonator-backed ground for sub-6 GHz, C and X band applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This article proposes the design and analysis of a quad-band fractal square monopole with complimentary split ring resonator-backed ground plane. The metamaterial characteristic is responsible for improving the bandwidth of monopole antenna. The antenna operates at 4 microwave frequency band (4.43–4.57 GHz), (5.80–6 GHz)/sub-6 GHz band, (6.97–7.36 GHz)/C band, (7.89–8.18 GHz)/X band. Though quad-band is achieved with CSSR ground plane, fractal geometry inspired by Chinese coin-like structure improves impedance matching at the desired sub-6 GHz, C and X band. The prototype 50 × 50 × 1.6mm3 is manufactured on a flame retardant 4 substrate with dielectric constant 4.4 and loss tangent 0.002. The antenna covers the impedance bandwidth of 130 MHz(4.43–4.56 GHz), 180 MHz(5.79–5.97 GHz), 390 MHz(6.9–7.29 GHz), 280 MHz(7.91–8.19 GHz) with a resonance frequency of 4.50 GHz, 5.88 GHz, 7.08 GHz, 8.06 GHz, respectively. The antenna has low reflection coefficient, good impedance bandwidth and radiation pattern for the desired application. The current distribution in patch is studied with characteristic mode analysis. Moreover, the equivalent circuit of the antenna is extracted using Foster representation. The CSRR equivalent circuit is discussed using quasi-static analysis, and the negative permittivity of CSRR is extracted using Nicholson Ross weir method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. GAndrews et al., What Will 5G Be? IEEE J. Sel. Areas Commun. (2014). https://doi.org/10.1109/JSAC.2014.2328098

    Article  Google Scholar 

  2. W. Roh et al., Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. (2014). https://doi.org/10.1109/MCOM.2014.6736750

    Article  Google Scholar 

  3. N. Shinde Pratap, P. Jayashree, Design of compact pentagonal slot antenna with bandwidth enhancement for multiband wireless applications. AEU Int. J. Electron. C (2015). https://doi.org/10.1016/j.aeue.2015.07.001

    Article  Google Scholar 

  4. C. Bo, Du. Zhengwei, H. Daiwei, A broadband low-profile multimode microstrip antenna. IEEE Antennas Wirel Propag Lett. 18, 1332 (2019)

    Article  Google Scholar 

  5. F. Guirong, C. Lei, W. Xinwei, X. Xingsi, S. Xiaowei, Broadband circularly polarized crossed bowtie dipole antenna loaded with parasiticelements. IEEE Antennas Wirel Propag Lett. 17, 114 (2018)

    Article  Google Scholar 

  6. R. Rajkumar, K.U. Kiran, A compact metamaterial multiband antenna for WLAN/WiMAX/ITU band applications. AEU Int. J. Electron. Commun. 70, 599 (2016)

    Article  Google Scholar 

  7. K. Kumar-Naik, Asymmetric CPW-fed SRR patch antenna for WLAN/WiMAX applications AEU Int. J. Electron. Commun. 93, 103 (2018)

    ADS  Google Scholar 

  8. M.S. Kumar, Implementation of hybrid fractal metamaterial inspired frequency band reconfigurable multiband antenna for wireless applications. Int. J. RF Microw. Comput. Aided Eng. 30, 8 (2020). https://doi.org/10.1002/mmce.22315

    Article  Google Scholar 

  9. Satyadeep Das, Aman Gupta, Sudhakar Sahun, Metamaterial based fractal-ground loaded frequency-reconfigurable monopole-antenna with gain-bandwidth enhancement. Int. J. Electron. Commun. 132, 153593 (2021)

    Article  Google Scholar 

  10. H. Rajabloo, V. Amiri-Kooshk, H. Oraizi, Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application. Int. J. Electron. Commun. AEU 73, 144 (2016). https://doi.org/10.1016/j.aeue.2016.12.0279

    Article  Google Scholar 

  11. S. Reza, Compact Yagi-Uda slot antenna with metamaterial element for wide bandwidth wireless application. Int. J. RF Microw. Comput. Aided Eng. 31, 3 (2020). https://doi.org/10.1002/mmce.22380

    Article  Google Scholar 

  12. H. Singh, S. Kalraiya, M. Meshram, R. Shubair, Metamaterial inspired CPW-Fed compact antenna for ultra-wideband applications. Int. J. RF Microw. Comput.- Aided Eng. 29, 21768 (2019). https://doi.org/10.1002/mmce.217689

    Article  Google Scholar 

  13. R. Pandeeswari, S. Raghavan, Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement. Microw. Opt. Technol. Lett. 57, 292 (2015)

    Article  Google Scholar 

  14. S. Sahu, R. Mishra, DRA gain enhancement using a planar metamaterial superstrate. Int. J. RF Microw. Comput. Aided Eng. 28, 21445 (2018). https://doi.org/10.1002/mmce.21445

    Article  Google Scholar 

  15. S.K. Patel, Y. Kosta, Multiband meandered miniaturized patch antenna loaded with split ring resonator and thin wire arrays. Microw. Opt. Technol. Lett. 56, 306 (2014)

    Article  Google Scholar 

  16. R. Li, Q. Zhang, Y. Kuang, X. Chen, Z. Xiao, J. Zhang, Design of a miniaturized antenna based on split ring resonators for 5G wireless communications. In Proceedings of the 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 1–4 (2019)

  17. R. Samson Daniel, R. Pandeeswari, S. Raghavan, A miniaturized printed monopole antenna loaded with hexagonal complementary split ring resonators for multiband operations. Int. J. RF Microw. Comput. Aided Eng. 28, 7 (2018). https://doi.org/10.1002/mmce.21401(2018)

    Article  Google Scholar 

  18. D. Abdulaziz, A. Om, S. Sudhakar, Application of metamaterials for performance enhancement of planar antennas: a review. Int. J. RF Microw. Comput. Aided Eng. 30, 22154 (2020). https://doi.org/10.1002/mmce.22154

    Article  Google Scholar 

  19. A. Islam. Hoque, M.T. Almutairi, F. Ali, Low-profile slotted metamaterial antenna based on bi slot microstrip patch for 5G application. Sensors 20, 3323 (2020)

    Article  ADS  Google Scholar 

  20. T. Sarkar, A. Ghosh, S. Chakraborty, L.L.K. Singh, S. Chattopadhyay, Employment of mixed mode in single-layer microstrip antenna for ISM/WiMAX/WLAN/4G/Sub 6 GHz 5G mobile communication. J. Electromag. Waves Appl. 34, 907 (2020). https://doi.org/10.1080/09205071.2020.1759463)

    Article  Google Scholar 

  21. A. Ashwini, K. Seong, K. Sanghoek, A dual-band antenna for LTE-R and 5G lower frequency operations. Prog. Electromag. Res. Lett. 88, 113 (2020). https://doi.org/10.2528/PIERL19081502

    Article  Google Scholar 

  22. A. Zaidi, W.A. Awan, N. Hussain, A. Baghdad, A wide and tri-band flexible antennas with independently controllable notch bands for sub-6-GHz communication system. Radioengineering 29, 44 (2020)

    Article  Google Scholar 

  23. R. Samson, R. Daniel, R. Pandeeswari, S. Raghavan, Multiband monopole antenna loaded with complementary split ring resonator and C-shaped slots. Int. J. Electron. Commun. 75, 8 (2017)

    Article  Google Scholar 

  24. B.R. Murugeshwari, S. Samson Daniel, A. Raghavan, compact dual band antenna based on metamaterial-inspired split ring structure and hexagonal complementary split-ring resonator for ISM/WiMAX/WLAN applications. Appl. Phys. A Mater. Sci. Process. 125, 628 (2019)

    Article  ADS  Google Scholar 

  25. R. Pandeeswari, SRR and NBCSRR inspired CPW fed triple band antenna with modified ground plane. Prog. Electromag. Res. C. 80, 111 (2018)

    Article  Google Scholar 

  26. S. Choudhury, A. Mohan, Miniaturized sierpinski fractal loaded qmsiw antenna with csrr in ground plane for WLAN applications. Microw. Opt. Technol. Lett. 59, 1291 (2017)

    Article  Google Scholar 

  27. S. Das, A. Gupta, S. Sahu, Metamaterial based fractal-ground loaded frequency-reconfigurable monopole-antenna with gain-bandwidth enhancement. Int. J. Electron. Commun. (AEÜ) 132, 153593 (2021)

    Article  Google Scholar 

  28. Y. Zhen, Y. Jianguo, R. Xiaoying, Z. Chenhua, A novel ancient coin-like fractal multiband antenna for wireless applications. Int. J. Antennas Propag. (2017). https://doi.org/10.1155/2017/6459286

    Article  Google Scholar 

  29. S. Subbaraj, M. Kanagasabai, M.G.N. Alsath, S.K. Palaniswamy, S. Kingsly, S. Kulandhaisamy, I.A.K. Shrivastav, R. Natarajan, M. Shanmugapriya, A compact frequency reconfigurable antenna with independent tuning for hand-held wireless devices. IEEE Trans. Antennas Propag. 68, 1 (2019)

    Google Scholar 

  30. C.A. Balanis, Modern Antenna Handbook, (2007).

  31. N. Hussain, M.-J. Jeong, J. Park, N. Kim, A broadband circularly polarized fabry-perot resonant antenna using a single-layered PRS for 5G MIMO applications. IEEE Access 7, 42897 (2019). https://doi.org/10.1109/ACCESS.2908441

    Article  Google Scholar 

  32. L. Weiwen, L. Yongcong, L. Jie, Y. Longfang, L. Qing, Modal proportion analysis in antenna characteristic mode theory. Int. J. Antennas Propag. (2019). https://doi.org/10.1155/2019/7069230

    Article  Google Scholar 

  33. A.K. Gangwar, M.S. Alam, A miniaturized quad-band antenna with slotted patch for WiMAX/WLAN/GSM application. Int J Electron Commun (AEU) 112, 152911 (2019)

    Article  Google Scholar 

  34. F. Bilotti, A. Toscano, A.L. Vegni, K. Aydin, K.B. Alici, E. Ozbay, IEEE Trans. Microw. Theory Tech. 55, 2865 (2007). https://doi.org/10.1109/TMTT.2007.909611

    Article  ADS  Google Scholar 

  35. R. Samson Daniel, Broadband m-negative antennas using ELC unit cell. Int. J. Electron. Commun. (AEÜ) 118, 153147 (2020). https://doi.org/10.1016/j.aeue.2020.153147

    Article  Google Scholar 

  36. A.K. Skrivervik, J.F. Zürcher, O. Staub, J.R. Mosig, PCS antenna design: the challenge of miniaturization. IEEE Antennas Propag. Mag. 43, 12 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobana Manoharan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoharan, S., Ramasamy, P. & Singaravelu, R. A quad-band fractal antenna with metamaterial resonator-backed ground for sub-6 GHz, C and X band applications. Appl. Phys. A 127, 703 (2021). https://doi.org/10.1007/s00339-021-04862-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04862-6

Keywords

Navigation