Skip to main content
Log in

The design of a turtle-shaped dielectric resonator antenna for ultrawide-band applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A novel type of turtle-shaped dielectric resonator antenna is proposed for use in ultrawide-band applications. Nine layers of different shapes of slabs are integrated and excited through a conformal strip. This staired-pyramid-type structure provides a large surface area for higher radiation efficiency. The integrated antenna is built on a defected ground structure to enhance the bandwidth of the antenna. The simulations and measured results for a fabricated prototype antenna for use in ultra-wideband applications are found to be in good agreement. The proposed antenna operates from 3.0 to 10.9 GHz (bandwidth 7.9 GHz), providing an impedance bandwidth of 114%. The ultrawide bandwidth is achieved by proper mixing of lower and higher modes generated through the slabs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. First Report and Order. Revision of Part 15 of the Commission’s Rule Regarding Ultra-Wideband Transmission system FCC 02–48. Federal Communications Commission (2002)

  2. Azim, R., Islam, M.T., Mandeep, J.S., Mobashsher, A.T.: A planar circular ring ultra-wideband antenna with dual band-notched characteristics. J. Electromagn. Waves Appl. 26(14–15), 2022–2032 (2012)

    Article  Google Scholar 

  3. Dissanayake, T., Esselle, K., Ge, Y.: Low-cost printed monopole antennas for wideband applications. In: Sabath, F., Mokole, E.L., Schenk, U., Nitsch, D. (eds.) Ultra-Wideband, Short-Pulse Electromagnetics, vol. 7, pp. 363–370. Springer, New York (2007)

    Chapter  Google Scholar 

  4. Chair, R., Kishk, A.A., Lee, K.F.: Ultrawide-band coplanar waveguide fed rectangular slot antenna. IEEE Antennas Wirel. Propag. Lett. 3, 227–229 (2004)

    Article  Google Scholar 

  5. Kanaujia, B.K., Khandelwal, M.K., Dwari, S.: Analysis and design of compact high gain microstrip patch antenna with defected ground structure for wireless applications. Wirel. Pers. Commun. 91(2), 661–678 (2016)

    Article  Google Scholar 

  6. Saed, M., Yadla, R.: Microstrip-fed low profile and compact dielectric resonator antennas. Prog. Electromagn. Res. PIER 56, 151–162 (2006)

    Article  Google Scholar 

  7. Kishk, A.A.: Wide-band truncated tetrahedron dielectric resonator antenna excited by a coaxial probe. IEEE Trans. Antennas Propag. 51, 2913–2917 (2003)

    Article  Google Scholar 

  8. Chair, R., Kishk, A.A., Lee, K.F.: Wideband stair-shaped dielectric resonator antennas. IET Microw. Antennas Propag. 1(2), 299–305 (2007)

    Article  Google Scholar 

  9. Lotfi Neyestanak, A.A., Hojjat Kashani, F., Barkeshli, K.: W-shaped enhanced-bandwidth patch antenna for wireless communication. Wirel. Pers. Commun. 43(4), 1257–1265 (2007)

    Article  Google Scholar 

  10. Liang, X.L., Denidni, T.A.: H-shaped dielectric resonator antenna for wideband application. IEEE Antennas Wirel. Propag. Lett. 7, 163–166 (2008)

    Article  Google Scholar 

  11. Zhang, L.N., Zhong, S.S., Xu, S.Q.: Broadband U-shaped dielectric resonator antenna with elliptical patch feed. Electron. Lett. 44(16), 947–949 (2008)

    Article  Google Scholar 

  12. Liang, X.L., Denidni, T.A., Zhang, L.N.: Wideband L-shaped dielectric resonator antenna with a conformal inverted-trapezoidal patch feed. IEEE Trans. Antennas Propag. 57(1), 271–274 (2009)

    Article  Google Scholar 

  13. Gopakumar, C., Mathew, K.T.: A wideband microstrip-line-fed isosceles trapezoidal dielectric resonator antenna with modified ground plane. Prog. Electromagn. Res. C 16, 127–136 (2010)

    Article  Google Scholar 

  14. Gao, Y., Feng, Z., Zhang, L.: Compact asymmetrical T-shaped dielectric resonator antenna for broadband applications. IEEE Trans. Antennas Propag. 60(3), 1611–1615 (2012)

    Article  Google Scholar 

  15. Abedian, M., Rahim, S.K.A., Khalily, M.: Two-segments compact dielectric resonator antenna for UWB application. IEEE Antennas Wirel. Propag. Lett. 11, 1533–1536 (2012)

    Article  Google Scholar 

  16. Khalily, M., Rahim, M.K.A., Kishk, A.A., Danesh, S.: Wideband P-shaped dielectric resonator antenna. Radioengineering 22(1), 281–285 (2013)

    Google Scholar 

  17. Kumar, J., Gupta, N.: Bandwidth and gain enhancement technique for gammadion cross dielectric resonator antenna. Wirel. Pers. Commun. 85(4), 2309–2317 (2015)

    Article  Google Scholar 

  18. Gupta, R.D., Parihar, M.S.: Investigation of an asymmetrical E-shaped dielectric resonator antenna with wideband characteristics. IET Microw. Antennas Propag. 10(12), 1292–1297 (2016)

    Article  Google Scholar 

  19. Abdul Rahim, S.B., Lee, C.K., Qing, A., Jamaluddin, M.H.: A triple-band hybrid rectangular dielectric resonator antenna (RDRA) for 4G LTE applications. Wirel. Pers. Commun. 98(3), 3021–3033 (2018)

    Article  Google Scholar 

  20. Agrawal, S., Parihar, M.S., Kondekar, P.N.: Performance analysis of a low profile hybrid antenna for broadband applications. Wirel. Pers. Commun. 100(3), 995–1007 (2018)

    Article  Google Scholar 

  21. Yaduvanshi, R.S., Parthasarathy, H.: Rectangular Dielectric Resonator Antennas. Springer, New Delhi (2016)

    Book  Google Scholar 

  22. Chang, T.-H., Kiang, J.-F.: Bandwidth broadening of dielectric resonator antenna by merging adjacent bands. IEEE Trans. Antennas Propag. 57(10), 3316–3320 (2009)

    Article  Google Scholar 

  23. Zou, M., Pan, J.: Investigation of resonant modes in wideband hybrid omnidirectional rectangular dielectric resonator antenna. IEEE Trans. Antennas Propag. 63(7), 3272–3275 (2015)

    Article  MathSciNet  Google Scholar 

  24. Singh, M., Vaish, A., Yaduvanshi, R.S.: An investigation of resonant modes in rectangular dielectric resonator antenna using transcendental equation. Wirel. Pers. Commun. 95(3), 2549–2559 (2017)

    Article  Google Scholar 

  25. Sharma, P., Singh, M., Vaish, A., Yaduvanshi, R.S.: Analytical computation of resonant frequency of rectangular dielectric resonator antenna by including effective dimensions of DRA. Wirel. Pers. Commun. 102(1), 543–558 (2018)

    Article  Google Scholar 

  26. N. Sehrawat, B.K. Kanaujia, A.J. Agarwal, Calculation of the resonant frequency of a rectangular dielectric resonator antenna using perturbation theory. J. Comput. Electron. 18(1), 211–221 (2019)

    Article  Google Scholar 

  27. Varshney, G., Pandey, V.S., Yaduvanshi, R.S.: Axial ratio bandwidth enhancement of a circularly polarized rectangular dielectric resonator antenna. Int. J. Microw. Wirel. Technol. 10(8), 984–990 (2018)

    Article  Google Scholar 

  28. Singh, M., Yaduvanshi, R.S., Vaish, A.: An investigation of massive gain in hybrid configurable cylindrical dielectric resonator antenna. Wirel. Pers. Commun. 101(3), 1247–1260 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Mr. Harinder Singh and Mr. Mukul Verma, Bharat Electronics Limited (BEL), UP, India provided unconditional support for the experimental results on the fabricated turtle-shaped UWB antenna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Vaish, A. & Yaduvanshi, R.S. The design of a turtle-shaped dielectric resonator antenna for ultrawide-band applications. J Comput Electron 18, 1333–1341 (2019). https://doi.org/10.1007/s10825-019-01374-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01374-8

Keywords

Navigation