Skip to main content
Log in

First-Principles Study on C3N4 Intermediate Band Materials

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic structures and optical properties of cubic C3N4 doped by vanadium (V) were investigated by first principles. The calculation results of the electronic structure show that V-doped cubic C3N4 can produce two intermediate bands around the Fermi level. The calculation results of the optical properties show that V doping can significantly increase the light absorption of cubic C3N4 in UV–visible region. Therefore, the overall calculated results show that V-doped cubic C3N4 can produce new intermediate band structures and improve the optical performance of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Hao, S. Hao, Q. Li, X. Liu, H. Zou, and H. Yang, Metal-Nanoparticles-Loaded Ultrathin g-C3N4 Nanosheets at Liquid–Liquid Interfaces for Enhanced Biphasic Catalysis. ACS Appl. Mater. Interface 13, 47236 (2021).

    Article  CAS  Google Scholar 

  2. G.A. Mulungulungu, T. Mao, and K. Han, Efficient Removal of High-Concentration Copper Ions from Wastewater Via 2D g-C3N4 Photocatalytic Membrane Filtration. Colloids Surf. A 623, 126714 (2021).

    Article  CAS  Google Scholar 

  3. J. Ding, X. Sun, Q. Wang, D.S. Li, and K.K. Ostrikov, Plasma Synthesis of Pt/g-C3N4 Photocatalysts with Enhanced Photocatalytic Hydrogen Generation. J. Alloy Compd. 873, 159871 (2021).

    Article  CAS  Google Scholar 

  4. G. Zeng, Y. Deng, X. Yu, Y. Zhu, and Y. Zhang, Ultrathin g-C3N4 as a Hole Extraction Layer to Boost Sunlight-Driven Water Oxidation of BiVO4-Based Photoanode. J. Power Source 494, 229701 (2021).

    Article  CAS  Google Scholar 

  5. Q. Li, H. Xu, G. Zhou, F. Cheng, and Q. Wang, Sulfite Activation by Fe-doped g-C3N4 for Metronidazole Degradation. Sep. Purif. Technol. 272, 118928 (2021).

    Article  CAS  Google Scholar 

  6. Y. Chen, Y. Zhang, H. Zou, M. Li, and Z. Tang, Tuning the Gas-Liquid-Solid Segmented Flow for Enhanced Heterogeneous Photosynthesis of Azo-Compounds. Chem. Eng. J. 423, 130226 (2021).

    Article  CAS  Google Scholar 

  7. H. Qi, Y. Zhou, Y. Li, F. Liao, Z. Wang, X. Wang, H. Huang, M. Shao, Y. Liu, and Z. Kang, ZIF/Co-C3N4 with Enhanced Electrocatalytic Reduction of Carbon Dioxide Activity by the Photoactivation Process. Nanoscale 13, 14089 (2021).

    Article  CAS  Google Scholar 

  8. Z. Cai, M. Kamiko, I. Yamada, and S. Yagi, PtCo3 Nanoparticle-Encapsulated Carbon Nanotubes as Active Catalysts for Methanol Fuel Cell Anodes. ACS Appl. Nano Mater. 4, 1445 (2021).

    Article  CAS  Google Scholar 

  9. H. Zhang, D. Zheng, Z. Cai, Z. Song, and L. Guo, Graphitic Carbon Nitride Nanomaterials for Multicolor Light-Emitting Diodes and Bioimaging. ACS Appl. Nano Mater. 3, 6798 (2020).

    Article  CAS  Google Scholar 

  10. J.T. Cao, X.L. Fu, L.Z. Zhao, S.H. Ma, and Y.M. Liu, Highly Efficient Resonance Energy Transfer in g-C3N4-Ag Nanostructure: Proof-of-Concept Toward Sensitive Split-Type Electrochemiluminescence Immunoassay. Sens. Actuators B Chem. 311, 127926 (2020).

    Article  CAS  Google Scholar 

  11. X. Zhou, C. Zhao, C. Chen, J. Chen, and X. Chen, The Interaction of H2O, O2 and H2O+O2 Molecules with g-C3N4 Surface: A First-Principle Study. Diam. Relat. Mater. 125, 108995 (2022).

    Article  CAS  Google Scholar 

  12. H. Zhang, L. Jia, P. Wu, R. Xu, J. He, and W. Jiang, Improved H2O2 Photogeneration by KOH-Doped g-C3N4 Under Visible Light Irradiation Due to Synergistic Effect of N Defects and K Modification. Appl. Surf. Sci. 527, 146584 (2020).

    Article  CAS  Google Scholar 

  13. D.M. Teter and R.J. Hemley, Low-Compressibility Carbon Nitrides. Science 271, 53 (1996).

    Article  CAS  Google Scholar 

  14. K.S. Al-Namshah and R.M. Mohamed, Development of Mesoporous Bi2WO6/g-C3N4 Heterojunctions Via Soft- and Hard-Template-Assisted Procedures for Accelerated and Reinforced Photocatalytic Reduction of Mercuric Cations Under Vis Light Irradiation. Ceram. Int. 47, 5003 (2021).

    Article  CAS  Google Scholar 

  15. H.R.S. Abdellatif, G. Zhang, D. Xie, J. Ni, and C. Ni, Ionic Salt-Mediated Tuning of the Morphology and Band Structure of Graphitic Carbon Nitride for NO Removal Under Visible Light. ACS Appl. Nano Mater. 4, 2828 (2021).

    Article  CAS  Google Scholar 

  16. S.K. Deb, A. Kumar, C. Narayana, G.K. Pradhan, and U.V. Waghmare, Elastic and Structural Instability of Cubic Sn3N4 and C3N4 Under Pressure. Phys. Rev. B 82, 2635 (2010).

    Google Scholar 

  17. L.C. Ming, P. Zinin, Y. Meng, X.R. Liu, S.M. Hong, and Y. Xie, A Cubic Phase of C3N4 Synthesized in the Diamond-Anvil Cell. J. Appl. Phys. 99, 841 (2006).

    Article  Google Scholar 

  18. Z.A. Jing, X.A. Bo, S. Chao, B. Wza, C. Ddd, and B. Bpa, Roles of Oxygen-Containing Functional Groups of O-Doped g-C3N4 in Catalytic Ozonation: Quantitative Relationship and First-Principles Investigation-Science Direct. Appl. Catal. B Environ. 292, 120155 (2021).

    Article  Google Scholar 

  19. O. Hakami, Rational Construction of 1D/2D Cu-NiS/S-g-C3N4 Binary Nanocomposites Heterojunction Enriching Spatial Charge Carrier Separation Under Visible Light Irradiation. Mater. Sci. Semicond. Process. 141, 106448 (2022).

    Article  CAS  Google Scholar 

  20. X.B. Ding, F. Li, Q.C. Cao, H. Wu, Y.H. Qin, L. Yang, T. Wang, X. Zheng, and C.W. Wang, Core-Shell S-Doped g-C3N4@P123 Derived N and S Co-Doped Carbon as Metal-Free Electrocatalysts Highly Efficient for Oxygen Reduction Reaction. Chem. Eng. J. 429, 132469 (2022).

    Article  CAS  Google Scholar 

  21. Z. Zhu, Z. Liu, X. Tang, R. Kumar, and J. Zhao, Sulfur Doped g-C3N4 for Efficient Photocatalytic CO2 Reduction: An Insight by Experiment and First-Principle Calculation. Catal. Sci. Technol. 11, 1725 (2021).

    Article  CAS  Google Scholar 

  22. Y.B. Wu, C. He, F.S. Han, and W.X. Zhang, Construction of an Arsenene/g-C3N4 Hybrid Heterostructure Towards Enhancing Photocatalytic Activity of Overall Water Splitting: A First-Principles Study. J. Solid State Chem. 299, 122138 (2021).

    Article  CAS  Google Scholar 

  23. X. Zhou, C. Zhao, J. Chen, and L. Chen, Influence of B, Zn, and B-Zn Doping on Electronic Structure and Optical Properties of g-C3N4 Photocatalyst: A First-Principles Study. Result Phys. 26, 104338 (2021).

    Article  Google Scholar 

  24. B.K. Rajwar and S.K. Sharma, Chemically Synthesized Ti-doped SnS2 Thin Films as Intermediate Band Gap Material for Solar Cell Application. Opt. Quantum Electron 54, 1 (2022).

    Article  Google Scholar 

  25. D. Huang, L. Ding, Y. Xue, J. Guo, Y.J. Zhao, and C. Persson, Interface of Sn-doped AgAlTe2 and LiInTe2: A Theoretical Model of Tandem Intermediate Band Absorber. Appl. Phys. Lett. 118, 04390 (2021).

    Article  Google Scholar 

  26. N. Nor, E. Mazalan, and N. Amin, Insights into Enhancing Photocatalytic Reduction of CO2: Substitutional Defect Strategy of Modified g-C3N4 by Experimental and Theoretical Calculation Approaches. J. Alloy Compd. 871, 159464 (2021).

    Article  CAS  Google Scholar 

  27. I. Ramiro and A. Martí, Intermediate Band Solar Cells: Present and Future. Prog Photovolt Res. Appl. 29, 705 (2020).

    Article  Google Scholar 

  28. A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. Cuadra, and A. Luque, Novel Semiconductor Solar Cell Structures: The Quantum Dot Intermediate Band Solar Cell. Thin Solid Films 511, 638 (2006).

    Article  Google Scholar 

  29. Z. Zhang, H. Guo, G. Zhong, F. Yu, Q. Xiong, and X. Fan, Formation of Cubic C3N4 Thin Films by Plasma Enhanced Chemical Vapor Deposition. Thin Solid Films 346, 96 (1999).

    Article  CAS  Google Scholar 

  30. X. Zhan, Z. Deng, J. Nie, Y. Du, L. Li, and X. Zu, First-Principles Study on the Strain-Mediated g-C3N4/blue Phosphorene Heterostructures for Promising Photocatalytic Performance. J. Phys. Condens. Matter 33, 485703 (2021).

    Article  CAS  Google Scholar 

  31. Q. Chen, R. Zhang, J. Xu, S. Cao, and F. Gao, First-Principles Calculations of Defect Formation Energy and Carrier Concentration Ti4+, Ta5+ and W6+ Doped KSr2Nb5O15. Comput. Mater. Sci. 173, 109427 (2019).

    Article  Google Scholar 

  32. K. Kobayashi, S. Yamaoka, K. Sueoka, and J. Vanhellemont, Thermal Equilibrium Concentration of Intrinsic Point Defects in Heavily Doped Silicon Crystals-Theoretical Study of Formation Energy and Formation Entropy in Area of Influence of Dopant Atoms. J. Cryst. Growth 474, 110 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Gansu Provincial Natural Science Foundation (Grant No.1506RJYA093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Yan, X. & Zhu, M. First-Principles Study on C3N4 Intermediate Band Materials. J. Electron. Mater. 52, 376–383 (2023). https://doi.org/10.1007/s11664-022-09996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09996-8

Keywords

Navigation