Skip to main content
Log in

Modulation of Optoelectronic and Mechanical Properties Across (Bio)Molecular Junctions Under External Stimuli

  • Topical Collection: Advanced Materials for Energy Generation and Storage
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Molecular junctions are formed by wedging molecules between two metal electrodes. In addition to the conventional parameters of the metal–molecule–metal junction, such as the work function of electrodes and the molecules' energy gap, molecule-electrode electronic coupling strength also plays a vital role in modulating the electronic properties of the molecular junction under external stimuli. We have examined the electron transport across bacteriorhodopsin molecular junction under various external forces applied at the AFM tip in the electrical characterization process with different humidity values under dark and illumination conditions. We have analyzed experimentally obtained IV data under these external stimuli using tunneling-based transport modeling techniques such as differential conductance, law of corresponding states, normalized differential conductance, transition voltage spectroscopy, and Landauer transport formalism. We have also calculated several transport parameters which play a crucial role in finding the origin of conductance modulation under the external stimuli. We found that before particular humidity conditions, the modulation in the conductance is due to the variation in coupling strength, which is due to the modulation in the electrostatic environment of retinal chromophores of a protein by changing its structure under various external stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.K. Arya, P.R. Solanki, M. Datta, and B.D. Malhotra, Biosens. Bioelectron. 24, 2810 (2009).

    Article  CAS  Google Scholar 

  2. C.D. Bostick, S. Mukhopadhyay, I. Pecht, M. Sheves, D. Cahen, and D. Lederman, Rep. Prog. Phys. 81, 026601 (2018).

    Article  Google Scholar 

  3. J.J. Davis, D.A. Morgan, C.L. Wrathmell, D.N. Axford, J. Zhao, and N. Wang, J. Mater. Chem. 15, 2160 (2005).

    Article  CAS  Google Scholar 

  4. P. Facci, Biomolecular Electronics: Bioelectronics and the Electrical Control of Biological Systems and Reactions. (2014).

  5. C. Nicolini, V. Erokhin, P. Facci, S. Guerzoni, A. Ross, and P. Paschkevitsch, Biosens. Bioelectron. 12, 613 (1997).

    Article  CAS  Google Scholar 

  6. W. Zhang and G. Li, Anal. Sci. 20, 603 (2004).

    Article  CAS  Google Scholar 

  7. T. Kuila, S. Bose, P. Khanra, A.K. Mishra, N.H. Kim, and J.H. Lee, Biosens. Bioelectron. 26, 4637 (2011).

    Article  CAS  Google Scholar 

  8. J. Zhao, J.J. Davis, M.S.P. Sansom, and A. Hung, J. Am. Chem. Soc. 126, 5601 (2004).

    Article  CAS  Google Scholar 

  9. T. Rakshit and R. Mukhopadhyay, J. Colloid Interface Sci 388, 282 (2012).

    Article  CAS  Google Scholar 

  10. A. Lewis, I. Rousso, E. Khachatryan, I. Brodsky, K. Lieberman, and M. Sheves, Biophys. J. 70, 2380 (1996).

    Article  CAS  Google Scholar 

  11. L. Andolfi and S. Cannistraro, Surf. Sci. 598, 68 (2005).

    Article  CAS  Google Scholar 

  12. W. Li, L. Sepunaru, N. Amdursky, S.R. Cohen, I. Pecht, M. Sheves, and D. Cahen, ACS Nano 6, 10816 (2012).

    Article  CAS  Google Scholar 

  13. A. Aharoni, M. Ottolenghi, and M. Sheves, Photochem. Photobiol. 75, 668 (2002).

    Article  CAS  Google Scholar 

  14. A.J. Das, S. Mukhopadhyay, and K.S. Narayan, J. Chem. Phys. 134, 075101 (2011).

    Article  Google Scholar 

  15. T. He, N. Friedman, D. Cahen, and M. Sheves, Adv. Mater. 17, 1023 (2005).

    Article  CAS  Google Scholar 

  16. S. Mukhopadhyay, S.R. Cohen, D. Marchak, N. Friedman, I. Pecht, M. Sheves, and D. Cahen, ACS Nano 8, 7714 (2014).

    Article  CAS  Google Scholar 

  17. K. Ramya and S. Mukhopadhyay, J. Mater. Sci. Mater. 33, 8376–8384 (2021).

    Article  Google Scholar 

  18. N.A. Dencher, H.J. Sass, and G. Büldt, Biochim. Biophys. Acta Bioenergy 1460, 192 (2000).

    Article  CAS  Google Scholar 

  19. S. Grudinin, G. Büldt, V. Gordeliy, and A. Baumgaertner, Biophys. J. 88, 3252 (2005).

    Article  CAS  Google Scholar 

  20. A. Vilan, J. Phys. Chem. C 111, 4431 (2007).

    Article  CAS  Google Scholar 

  21. A. Vilan, D. Aswal, and D. Cahen, Chem. Rev. 117, 4248 (2017).

    Article  CAS  Google Scholar 

  22. J.M. Beebe, B. Kim, J.W. Gadzuk, C. Daniel Frisbie, and J.G. Kushmerick, Phys. Rev. Lett. 97, 026801 (2006).

    Article  Google Scholar 

  23. A. Vilan, D. Cahen, and E. Kraisler, ACS Nano 7, 695 (2013).

    Article  CAS  Google Scholar 

  24. A. Vilan, Phys. Chem. Chem. Phys. 19, 27166 (2017).

    Article  CAS  Google Scholar 

  25. K. Ramya and S. Mukhopadhyay, J. Electron. Mater. 50, 1573–1580 (2020).

    Article  Google Scholar 

  26. I. Bâldea, Z. Xie, and C.D. Frisbie, Nanoscale 7, 10465 (2015).

    Article  Google Scholar 

  27. I. Bâldea, Phys. Rev. B 85, 035442 (2012).

    Article  Google Scholar 

  28. E.H. Huisman, C.M. Guédon, B.J. van Wees, and S.J. van der Molen, Nano Lett. 9, 3909 (2009).

    Article  CAS  Google Scholar 

  29. T. Markussen, J. Chen, and K.S. Thygesen, Phys. Rev. B 83, 155407 (2011).

    Article  Google Scholar 

  30. T. Ando, in Mesoscopic Phys. Electron. (Springer, Berlin, Heidelberg, n.d.), pp. 11–14.

Download references

Acknowledgments

KR acknowledges financial support from the Department of Physics and SRM University research program for her doctoral fellowship. SM acknowledges SERB-DST, Govt. of India for Early Career Research Award grants (ECR/2017/001937), and SRM University research funding for financial support. In addition, we acknowledge support from the Chemical Research Support group of WIS, Israel, for experimental facilities and scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunchanapalli Ramya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2932 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, K., Mukhopadhyay, S. Modulation of Optoelectronic and Mechanical Properties Across (Bio)Molecular Junctions Under External Stimuli. J. Electron. Mater. 52, 1609–1614 (2023). https://doi.org/10.1007/s11664-022-09816-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09816-z

Keywords

Navigation