Skip to main content
Log in

Molecule–Electrode Electronic Coupling Modulates Optoelectronics of (Bio)Molecular Junctions

  • Asian Consortium ACCMS–International Conference ICMG 2020
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The charge transport across a molecular junction formed by sandwiching molecules between two electrodes in testbed architectures depends not only on the work function of the metal electrodes and energy gap of the molecules but also on the efficacy of the molecule–electrode electronic coupling. Insights into such molecule–electrode coupling would help to understand the relation between the coupling strength and electron transport processes. With this aim, the optoelectronic modulation across bacteriorhodopsin-based molecular junctions has been studied using experimental current–voltage traces obtained by conducting-probe atomic force microscopy under various illuminations. The energy barrier \( \left( {\varepsilon_{0} } \right) \), molecule–electrode coupling (Γg), and other transport parameters were determined utilizing the Landauer model with a single-Lorentzian transmission function, transition voltage spectroscopy, and the law of corresponding states in the universal tunneling model approach. The findings reveal that the optoelectronic modulation of bacteriorhodopsin molecular junctions originate from alteration of the molecule–electrode coupling, which could originate from modulation of electronic states and the electrostatic environment of retinal chromophores made of the protein under dark and green or green–blue illumination conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Panda, H.E. Katz, and J.D. Tovar, Chem. Soc. Rev. 47, 3640 (2018).

    Article  CAS  Google Scholar 

  2. J.J. Davis, D.A. Morgan, C.L. Wrathmell, D.N. Axford, J. Zhao, and N. Wang, J. Mater. Chem. 15, 2160 (2005).

    Article  CAS  Google Scholar 

  3. I. Ron, L. Sepunaru, S. Itzhakov, T. Belenkova, N. Friedman, I. Pecht, M. Sheves, and D. Cahen, J. Am. Chem. Soc. 132, 4131 (2010).

    Article  CAS  Google Scholar 

  4. O. Berthoumieu, A.V. Patil, W. Xi, L. Aslimovska, J.J. Davis, and A. Watts, Nano Lett. 12, 899 (2012).

    Article  CAS  Google Scholar 

  5. A.V. Patil, T. Premaruban, O. Berthoumieu, A. Watts, and J.J. Davis, J. Phys. Chem. B 116, 683 (2012).

    Article  CAS  Google Scholar 

  6. Y.D. Jin, N. Friedman, M. Sheves, and D. Cahen, Adv. Funct. Mater. 17, 1417 (2007).

    Article  CAS  Google Scholar 

  7. A.V. Patil, T. Premaraban, O. Berthoumieu, A. Watts, and J.J. Davis, Chem. Eur. J. 18, 5632 (2012).

    Article  CAS  Google Scholar 

  8. T. Ando, Mesoscopic Physics and Electronics, ed. T. Ando, Y. Arakawa, K. Furuya, S. Komiyama, and H. Nakashima (Berlin: Springer, 1998), pp. 11–14.

    Chapter  Google Scholar 

  9. A. Vilan, J. Phys. Chem. C 111, 4431 (2007).

    Article  CAS  Google Scholar 

  10. A. Vilan, D. Cahen, and E. Kraisler, ACS Nano 7, 695 (2013).

    Article  CAS  Google Scholar 

  11. M. Ben-Nun, J. Quenneville, and T.J. Martínez, J. Phys. Chem. A 104, 5161 (2000).

    Article  CAS  Google Scholar 

  12. C. Punwong, T.J. Martínez, and S. Hannongbua, Chem. Phys. Lett. 610–611, 213 (2014).

    Article  Google Scholar 

  13. E. Nango, et’al., Science 354, 1552 (2016).

    Article  CAS  Google Scholar 

  14. J. Allen, F1000 Fac. Rev. Res. 8, 211 (2019).

    Article  CAS  Google Scholar 

  15. L. Sepunaru, N. Friedman, I. Pecht, M. Sheves, and D. Cahen, J. Am. Chem. Soc. 134, 4169 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K.R. acknowledges financial support from the Department of Physics, and SRM University research program for her doctoral fellowship. S.M. acknowledges SERB-DST, Govt. of India for Early Career Research Award Grants (ECR/2017/001937), Molecule–Electrode Electronic Coupling Modulates Optoelectronics of (Bio)Molecular Junctions and SRM University research funding for financial support. We acknowledge support from the Chemical Research Support group of WIS, Israel for experimental facilities and scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunchanapalli Ramya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, K., Mukhopadhyay, S. Molecule–Electrode Electronic Coupling Modulates Optoelectronics of (Bio)Molecular Junctions. J. Electron. Mater. 50, 1573–1580 (2021). https://doi.org/10.1007/s11664-020-08263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08263-y

Keywords

Navigation