Skip to main content
Log in

Effect of external mechanical force on the molecule–electrodes electronic coupling in (bio)molecular junctions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two-dimensional molecular junctions (MJs) are mostly developed by sandwiching molecules between two metal electrodes. Charge transport in molecular junctions is not only determined by the difference between work function of electrodes and HOMO/LUMO of the molecule (≈ energy offset, \({\varepsilon }_{0}\)), but also on molecule–electrode electronic coupling strengths (\({\Gamma }_{g}\)). Detailed knowledge of molecule–electrode coupling could reveal its effect on electron transport efficiency. We have examined the modulation of electronic conductance (\(G\)) across bio-molecule/protein-based MJs, where electronic coupling strengths were altered via applied mechanical forces on molecules with conducting-AFM probe. We have utilized numerical tunneling transport models which are developed for MJs and calculated \(G\), \({\varepsilon }_{0}\), \({\Gamma }_{g}\) from experimentally obtained current–voltage data. We conclude that the modulation in electronic transport in bio-MJs under applied forces originates from the alteration of \({\Gamma }_{g}\), which further incites the alteration of physical structure and variation of electrostatics environment around the chromophore of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Kawadkar, M.K. Chauhan, M. Maharana, Asian J. Pharm. Clin. Res. 4, 23 (2011)

    CAS  Google Scholar 

  2. J. Allen, F1000Research 2019(8), 211 (2019)

    Article  Google Scholar 

  3. R.L. McCreery, H. Yan, A.J. Bergren, Phys. Chem. Chem. Phys. 15, 1065 (2013)

    Article  CAS  Google Scholar 

  4. D. Bhattacharya, B. Ghosh, M. Mukhopadhyay, IET Nanobiotechnol. 13, 778 (2019)

    Article  Google Scholar 

  5. B. Mukherjee, A.K. Ray, A.K. Sharma, D. Huang, J. Mater. Sci.: Mater. Electron. 28, 3936 (2017)

    CAS  Google Scholar 

  6. C.D. Bostick, D.R. Flora, P.M. Gannett, T.S. Tracy, D. Lederman, Nanotechnology 26, 155102 (2015)

    Article  Google Scholar 

  7. M.J. Robles-Águila, K.S. Pérez, V. Stojanoff, H. Juárez-Santiesteban, R. Silva-González, A. Moreno, J. Mater. Sci.: Mater. Electron. 25, 1354 (2014)

    Google Scholar 

  8. S. Trivedi, O. Prakash Choudhary, J. Gharu, Recent Pat. DNA Gene Seq. Discontin. 5, 35 (2011)

    Article  CAS  Google Scholar 

  9. E. Nango, A. Royant, M. Kubo, T. Nakane, C. Wickstrand, T. Kimura, T. Tanaka, K. Tono, C. Song, R. Tanaka, T. Arima, A. Yamashita, J. Kobayashi, T. Hosaka, E. Mizohata, P. Nogly, M. Sugahara, D. Nam, T. Nomura, T. Shimamura, D. Im, T. Fujiwara, Y. Yamanaka, B. Jeon, T. Nishizawa, K. Oda, M. Fukuda, R. Andersson, P. Båth, R. Dods, J. Davidsson, S. Matsuoka, S. Kawatake, M. Murata, O. Nureki, S. Owada, T. Kameshima, T. Hatsui, Y. Joti, G. Schertler, M. Yabashi, A.-N. Bondar, J. Standfuss, R. Neutze, S. Iwata, Science 354, 1552 (2016)

    Article  CAS  Google Scholar 

  10. S. Mukhopadhyay, S.R. Cohen, D. Marchak, N. Friedman, I. Pecht, M. Sheves, D. Cahen, ACS Nano 8, 7714 (2014)

    Article  CAS  Google Scholar 

  11. J. Zhao, J.J. Davis, M.S.P. Sansom, A. Hung, J. Am. Chem. Soc. 126, 5601 (2004)

    Article  CAS  Google Scholar 

  12. C. Jia, X. Guo, Chem. Soc. Rev. 42, 5642 (2013)

    Article  CAS  Google Scholar 

  13. A. Vilan, J. Phys. Chem. C 111, 4431 (2007)

    Article  CAS  Google Scholar 

  14. A.V. Patil, T. Premaraban, O. Berthoumieu, A. Watts, J.J. Davis, Chemistry 18, 5632 (2012)

    Article  CAS  Google Scholar 

  15. I. Bâldea, Z. Xie, C.D. Frisbie, Nanoscale 7, 10465 (2015)

    Article  Google Scholar 

  16. I. Bâldea, Phys. Rev. B (2012). https://doi.org/10.1103/PhysRevB.85.035442

    Article  Google Scholar 

  17. A. Vilan, D. Aswal, D. Cahen, Chem. Rev. 117, 4248 (2017)

    Article  CAS  Google Scholar 

  18. J.M. Beebe, B. Kim, J.W. Gadzuk, C.D. Frisbie, J.G. Kushmerick, Phys. Rev. Lett. 97, 026801 (2006)

    Article  Google Scholar 

  19. T. Markussen, J. Chen, K.S. Thygesen, Phys. Rev. B 83, 155407 (2011)

    Article  Google Scholar 

  20. A. Vilan, Phys. Chem. Chem. Phys. 19, 27166 (2017)

    Article  CAS  Google Scholar 

  21. T. Ando, et al., in Mesoscopic Physics and Electronics (Springer, Berlin, Heidelberg, 1998), pp. 11–14

  22. K. Ramya, S. Mukhopadhyay, J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-08263-y

Download references

Acknowledgements

K.R. acknowledges financial support from SRM University, Andhra Pradesh, for her doctoral fellowship. S.M. acknowledges SERB-DST, Govt. of India for Early Career Research Award grants (ECR/2017/001937), and SRM University seed research funding to set up laboratory facilities. S.M. acknowledges support from the Chemical Research Support group of Weizmann Institute of Science, Israel, for experimental facilities and scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Mukhopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya, K., Mukhopadhyay, S. Effect of external mechanical force on the molecule–electrodes electronic coupling in (bio)molecular junctions. J Mater Sci: Mater Electron 33, 8376–8384 (2022). https://doi.org/10.1007/s10854-021-06277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06277-8

Navigation