Skip to main content
Log in

XANES Investigations on Electronic Structure and Magnetic Properties of GaFeO3 Nanocrystals

  • Topical Collection: Synthesis and Advanced Characterization of Magnetic Oxides
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanocrystals of GaFeO3 were prepared using co-precipitation followed by thermal annealing at 800 °C for 6 h. The lattice parameters and crystallite size were studied using x-ray diffraction (XRD). Transmission electron microscopy (TEM) measurements were performed to study the size and morphology and revealed the formation of 40–70 nm sized nanoparticles. X-ray absorption near-edge structure measurement was performed to probe the valence state of constituent elements in the GaFeO3 nanocrystals. It has been observed that Fe is present in solely the +3 valence state (i.e., Fe3+). The Ga3+ ions are found with vivid distribution at tetrahedral and octahedral sites and the occupancy of Ga3+ ions is quantitatively evaluated using Ga K-edge XANES spectra. The low-temperature (50 K) M-H loop measurement conveys a ferrimagnetic character of GaFeO3 compound. The paramagnetic behavior is seen at 300 K. The observed magnetic moments per formula unit (~ 1.6 μB) are close to the magnetic moment of Fe3+ ions with a low spin state (t2g5). The abundant Ga3+ ions at the tetrahedral site, as confirmed by Ga K-edge XANES analysis, lead to weak anisotropy in the compound and favor the regular hysteresis loop rather the pinched-like hysteresis loop at 50 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. He, X. Song, W. Qiao, Z. Li, X. Zhang, S. Yan, W. Zhong, and Y. Du, J. Phys. Chem. C 119, 9550 (2015).

    Article  CAS  Google Scholar 

  2. A. Sharma, M. Varshney, J. Park, T.K. Ha, K.H. Chae, and H.J. Shin, RSC Adv. 5, 21762 (2015).

    Article  CAS  Google Scholar 

  3. H. van Gog, W.F. Li, C. Fang, R.S. Koster, M. Dijkstra, and M. van Huis, NPJ 2D Mat. Appl. 3, 18 (2019).

    Article  Google Scholar 

  4. M.S. Chavali, and M.P. Nikolova, SN Appl. Sci. 1, 607 (2019).

    Article  CAS  Google Scholar 

  5. Y. Zhu, X. Zhang, K. Koh, L. Kovarik, J.L. Fulton, K.M. Rosso, and O.Y. Gutiérrez, Nat. Commun. 11, 3269 (2020).

    Article  CAS  Google Scholar 

  6. V.S. Kujur, and S. Singh, J. Mater. Sci: Mater. Electron. 31, 17633 (2020).

    Google Scholar 

  7. A.M. Kalashnikova, R.V. Pisarev, L.N. Bezmaternykh, V.L. Temerov, A. Kirilyuk, and Th. Rasing, Jetp Lett. 81, 452 (2005).

    Article  CAS  Google Scholar 

  8. S.C. Abrahams, J.M. Reddy, and J.L. Bernstein, J. Chem. Phys. 42, 3957 (1965).

    Article  CAS  Google Scholar 

  9. T. Arima, D. Higashiyama, Y. Kaneko, J.P. He, T. Goto, S. Miyasaka, T. Kimura, K. Oikawa, T. Kamiyama, R. Kumai, and Y. Tokura, Phys. Rev. B 70, 064426 (2004).

    Article  Google Scholar 

  10. M.J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 75, 060404(R) (2007).

    Article  Google Scholar 

  11. S.G. Bahoosh, and J.M. Wesselinowa, J. Appl. Phys. 113, 063905 (2013).

    Article  Google Scholar 

  12. J. Atanelov, and P. Mohn, Phys. Rev. B. 92, 104408 (2015).

    Article  Google Scholar 

  13. S. Basu, R. Singh, A. Das, T. Roy, A. Chakrabarti, A.K. Nigam, S.N. Jha, and D. Bhattacharyya, J. Phys. Chem. C 119, 2029 (2015).

    Article  CAS  Google Scholar 

  14. T. Katayama, S. Yasui, T. Osakabe, Y. Hamasaki, and M. Itoh, Chem. Mater. 30, 1436 (2018).

    Article  CAS  Google Scholar 

  15. H. Niu, M.J. Pitcher, A.J. Corkett, S. Ling, P. Mandal, M. Zanella, K. Dawson, P. Stamenov, D. Batuk, A.M. Abakumov, C.L. Bull, R.I. Smith, C.A. Murray, S.J. Day, B. Slater, F. Cora, J.B. Claridge, and M.J. Rosseinsky, J. Am. Chem. Soc. 139, 1520 (2017).

    Article  CAS  Google Scholar 

  16. J. Zhai, N. Cai, Z. Shi, Y. Lin, and C.W. Nan, J. Phys. D Appl. Phys. 37, 823 (2004).

    Article  CAS  Google Scholar 

  17. C.W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, and Y. Lin, J. Appl. Phys. 94, 5930 (2003).

    Article  CAS  Google Scholar 

  18. K. Zhao, K. Chen, Y.R. Dai, J.G. Wan, and J.S. Zhu, Appl. Phys. Lett. 87, 1629011 (2005).

    Google Scholar 

  19. A. Sharma, S. Kumar, R. Kumar, M. Varshney, and K.D. Verma, Opto. Electr. Adv. Mater. Rap. Commun. 3, 1285 (2009).

    CAS  Google Scholar 

  20. K. Recko, U. Wykowsk, W. Olszewski, G. Andre, J.J. Milczarek, D. Satula, M. Biernacka, B. Kalska-szostko, J. Waliszewski, and K. Szymanski, Opto. Electr. Adv. Mater. 17, 1173 (2015).

    CAS  Google Scholar 

  21. A. Sharma, J.P. Singh, S.O. Won, K.H. Chae, S.K. Sharma, and S. Kumar, Handbook of Materials Characterization (New York: Springer, 2018), p. 497.

    Book  Google Scholar 

  22. A. Sharma, M. Varshney, K.H. Chae, and S.O. Won, RSC Adv. 8, 26423 (2018).

    Article  CAS  Google Scholar 

  23. M. Varshney, A. Sharmaa, K.H. Chae, S. Kumar, and S.O. Won, J. Phys. Chem. Sol. 119, 242 (2018).

    Article  CAS  Google Scholar 

  24. G. Ye, G. Oprea, and T. Tom, J. Am. Ceram. Soc. 88, 3241 (2005).

    Article  CAS  Google Scholar 

  25. V.K. Singh, and R.K. Sinha, Mater. Lett. 31, 281 (1997).

    Article  CAS  Google Scholar 

  26. J.G. Chen, Surf. Sci. Rep. 30, 1 (1997).

    Article  CAS  Google Scholar 

  27. A. Sharma, M. Varshney, H.J. Shin, Y.J. Park, M.G. Kim, T.K. Ha, K.H. Chae, and S. Gautam, Phys. Chem. Chem. Phys. 16, 19909 (2014).

    Article  CAS  Google Scholar 

  28. J.P. Singh, B. Kaur, A. Sharma, S.H. Kim, S. Gautam, R.C. Srivastava, N. Goyal, W.C. Lim, H.J. Lin, J.M. Chen, K. Asokan, D. Kanjilal, S.O. Won, I.J. Lee, and K.H. Chae, Phys. Chem. Chem. Phys. 20, 12084 (2018).

    Article  CAS  Google Scholar 

  29. A. Sharma, M. Varshney, Y. Kumar, B.H. Lee, S.O. Won, K.H. Chae, A. Vij, R.K. Sharma, and H.J. Shin, J. Phys. Chem. Sol. 161, 110476 (2022).

    Article  CAS  Google Scholar 

  30. K. Nishi, K.I. Shimizu, M. Tanamatsu, H. Yoshida, A. Satsuma, T. Tanaka, S. Yoshida, and T. Hattori, J. Phys. Chem. B 102, 10190 (1998).

    Article  CAS  Google Scholar 

  31. K.I. Shimizu, M. Tanamatsu, K. Nishi, H. Yoshida, A. Satsuma, T. Tanaka, S. Yoshida, and T. Hattori, J. Phys. Chem. B 103, 1542 (1999).

    Article  CAS  Google Scholar 

  32. A. Sharma, M. Varshney, H.J. Shin, K.H. Chae, and S.O. Won, RSC Adv. 7, 52543 (2017).

    Article  CAS  Google Scholar 

  33. A. Sharma, M. Varshney, H. Saraswat, S. Chaudhary, J. Parkash, H.J. Shin, K.H. Chae, and S.O. Won, Int. Nano Lett. 10, 71 (2020).

    Article  CAS  Google Scholar 

  34. T.C. Han, T.Y. Chen, and Y.C. Lee, Appl. Phys. Lett. 103, 232405 (2013).

    Article  Google Scholar 

Download references

Acknowledgment

Dr. Aditya Sharma is thankful to the Honorable Vice-Chancellor and Dean(s) of the Manav Rachna, University, Faridabad, for constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aditya Sharma or Sung Ok Won.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Varshney, M., Gautam, T. et al. XANES Investigations on Electronic Structure and Magnetic Properties of GaFeO3 Nanocrystals. J. Electron. Mater. 51, 4133–4138 (2022). https://doi.org/10.1007/s11664-022-09722-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09722-4

Keywords

Navigation