Skip to main content
Log in

Nano-structured phases of gallium oxide (GaOOH, α-Ga2O3, β-Ga2O3, γ-Ga2O3, δ-Ga2O3, and ε-Ga2O3): fabrication, structural, and electronic structure investigations

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Regardless of much curiosity in the synthesis and diversifying properties of the polymorphs of gallium oxide, they are still unrevealed due to their nanoscale size and structural disorders. In this study, convincing methods have been applied to achieve various phases of gallium oxide (i.e., GaOOH, α-Ga2O3, β-Ga2O3, γ-Ga2O3, δ-Ga2O3, and ε-Ga2O3). X-ray diffraction (XRD) along with Rietveld refinement has been employed to investigate the structural parameters of barely reported phases. Transmission electron microscopy (TEM) images reveal the impact of the protocols of chemical synthesis on the morphology/size of the polymorphs of gallium oxide. Mechanistic discussion on the formation of nano-rod morphology in some of the phases (GaOOH and α-Ga2O3) and nano-particle morphology in other (β-Ga2O3, γ-Ga2O3, δ-Ga2O3 and ε-Ga2O3) phases is also provided by considering the experimental parameters. The existence of Ga3+ ions and their local hybridization with the oxygen is investigated using the X-ray absorption spectroscopy (XAS) at Ga K-edge and conveyed the phase dependence on the hybridization of frontier orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lin, H.J., Gao, H., Gao, P.X.: Appl. Phys. Lett. 110, 043101 (2017)

    Google Scholar 

  2. Pozina, G., Forsberg, M., Kaliteevski, M.A., Hemmingsson, C.: Sci. Rep. 7, 42132 (2017)

    CAS  Google Scholar 

  3. Mu, W., Yin, Y., Jia, Z., Wang, L., Sun, J., Wang, M., Tang, C., Hu, Q., Gao, Z., Zhang, J., Lin, N., Veronesi, S., Wang, Z., Zhao, X., Tao, X.: RSC Adv. 7, 21815 (2017)

    Google Scholar 

  4. Kim, J., Mastro, M.A., Tadjer, M.J., Kim, J., Appl, A.C.S.: Mater. Interfaces 10, 29724 (2018)

    CAS  Google Scholar 

  5. Wen, X.H., Ming, H.Q., Zhong, J.G., Bing, L.S., Tao, P., Ming, L.: Nano. Res. Lett. 13, 290 (2018)

    Google Scholar 

  6. Chua, D., Kim, S.B., Gordon, R.: AIP Adv. 9, 055203 (2019)

    Google Scholar 

  7. Muhammed, M.M., Roldan, M.A., Yamashita, Y., Sahonta, S.L., Ajia, I.A., Iizuka, K., Kuramata, A., Humphreys, C.J., Roqan, I.S.: Sci. Rep. 6, 29747 (2016)

    CAS  Google Scholar 

  8. Shan, F.K., Liu, G.X., Lee, W.J., Lee, G.H., Kim, I.S., Shin, B.C.: J. Appl. Phys. 98, 023504 (2005)

    Google Scholar 

  9. Passlacki, M., Schubert, E.F., Hobson, W.S., Hong, M., Moriya, N., Chu, S., Konstadinidis, K., Mannaerts, J.P., Schnoes, M.L., Zydzik, G.J.: J. Appl. Phys. 77, 686 (1995)

    Google Scholar 

  10. Soto, E.R., Connell, O., Dikengil, F., Peters, P.J., Clapham, P.R., Ostroff, G.R.: J. Drug Deliv. 2016, 8520629 (2016)

    Google Scholar 

  11. Adams, W.T., Ivanisevic, A.: ACS Omega 4, 6876 (2019)

    CAS  Google Scholar 

  12. Rodríguez, C.I.M., Álvarez, M.Á.L., Rivera, J.J.F., Arízaga, G.G.C., Michel, C.R.: ECS J. Solid State Sci. Technol. 8, Q3180 (2019)

    Google Scholar 

  13. Li, X., Zhen, X., Meng, S., Xian, J., Shao, Y., Fu, X., Li, D.: Environ. Sci. Technol. 47, 9911 (2013)

    CAS  Google Scholar 

  14. Manandhar, S., Ramana, C.V.: Appl. Phys. Lett. 110, 061902 (2017)

    Google Scholar 

  15. Battu, A.K., Manandhar, S., Shutthanandan, V., Ramana, C.V.: Chem. Phys. Lett. 684, 363 (2017)

    CAS  Google Scholar 

  16. Pearton, S.J., Yang, J., Cary, P.H., Ren, F., Kim, J., Tadjer, M.J., Mastro, M.A.: Appl. Phys. Rev. 5, 011301 (2018)

    Google Scholar 

  17. Ghodsi, V., Jin, S., Byers, J.C., Pan, Y., Radovanovic, P.V.: J. Phys. Chem. C 121, 9433 (2017)

    CAS  Google Scholar 

  18. Roy, R., Hill, V.G., Obson, E.F.: J. Am. Chem. Soc. 74, 719 (1952)

    CAS  Google Scholar 

  19. Yoshioka, S., Hayashi, H., Kuwabara, A., Oba, F., Matsunaga, K., Tanaka, I.: J. Phys. Condens. Matter 19, 346211 (2007)

    Google Scholar 

  20. Qian, H.S., Gunawan, P., Zhang, Y.X., Lin, G.F., Zheng, J.W., Xu, R.: Cryst. Growth Des. 8, 1282 (2008)

    CAS  Google Scholar 

  21. Mazeina, L., Perkins, F.K., Bermudez, V.M., Arnold, S.P., Prokes, S.M.: Langmuir 26, 13722 (2010)

    CAS  Google Scholar 

  22. Teng, Y., Song, L.X., Ponchel, A., Yang, Z.K., Xia, J.: Adv. Mater. 26, 6238 (2014)

    CAS  Google Scholar 

  23. Zhang, X., Zhang, Z., Huang, H., Wang, Y., Tong, N., Lin, J., Liu, D., Wang, X.: Nanoscale 10, 21509 (2018)

    CAS  Google Scholar 

  24. Gopal, R., Goyal, A., Saini, A., Nagar, M., Sharma, N., Gupta, D.K., Dhayal, V.: Ceram. Int. 44, 19099 (2018)

    CAS  Google Scholar 

  25. Playford, H.Y., Hannon, A.C., Barney, E.R., Walton, R.I.: Chem. Eur. J. 19, 2803 (2013)

    CAS  Google Scholar 

  26. Playford, H.Y., Hannon, A.C., Tucker, M.G., Dawson, D.M., Ashbrook, S.E., Kastiban, R.J., Sloan, J., Wolton, R.I.: J. Phys. Chem. C 118, 16188 (2014)

    CAS  Google Scholar 

  27. Sharma, A., Varshney, M., Shin, H.J., Chae, K.H., Won, S.O.: RSC Adv. 7, 52543 (2017)

    CAS  Google Scholar 

  28. Ravel, B., Newville, M.: J. Synchrotron Radiat. 12, 537 (2005)

    CAS  Google Scholar 

  29. Quan, Y., Fang, D., Zhang, X., Liu, S., Huang, K.: Mat. Chem. Phys. 121, 142 (2010)

    CAS  Google Scholar 

  30. Chen, Y., Xia, X., Liang, H., Abbas, Q., Liu, Y., Du, G.: Cryst. Growth Des. 18, 1147 (2018)

    CAS  Google Scholar 

  31. Nishi, K., Shimizu, K.I., Tanamatsu, M., Yoshida, H., Satsuma, A., Tanaka, T., Yoshida, S., Hattori, T.: J. Phys. Chem. B 102, 10190 (1998)

    CAS  Google Scholar 

  32. Samain, L., Jaworski, A., Edén, M., Ladd, D.M., Seo, D.K., Garcia, F.J.G., Häussermann, U.: J. Sol. Stat. Chem. 217, 1 (2014)

    CAS  Google Scholar 

  33. Paglia, G., Bozin, E.S., Billinge, S.J.L.: Chem. Mater. 18, 3242 (2006)

    CAS  Google Scholar 

  34. Roehrens, D., Brendt, J., Samuelis, D., Martin, M.: J. Sol. Stat. Chem. 183, 532 (2010)

    CAS  Google Scholar 

  35. Zinkevich, M., Aldinger, F.: J. Am. Ceram. Soc. 87, 683 (2004)

    CAS  Google Scholar 

  36. Ethayaraja, M., Bandyopadhyaya, R.: Langmuir 23, 6418 (2007)

    CAS  Google Scholar 

  37. Vaghayenegar, M., Kermanpur, A., Abbasi, M.H.: Sc. Iran. F 18, 1647 (2011)

    CAS  Google Scholar 

  38. Viana, B.C., Gonçalves, J.S., dos Santos, V., de Santos, M.R., Longo, E., Santos, F.E.P., de Matos, J.M.E.: J. Braz. Chem. Soc. 24, 1057 (2013)

    CAS  Google Scholar 

  39. Criado, G.M., Ruiz, J.S., Chu, M.H., Tucoulou, R., López, I., Nogales, E., Mendez, B., Piqueras, J.: Nano Lett. 14, 5479 (2014)

    Google Scholar 

  40. Shimizu, K.I., Tanamatsu, M., Nishi, K., Yoshida, H., Satsuma, A., Tanaka, T., Yoshida, S., Hattori, T.: J. Phys. Chem. B 103, 1542 (1999)

    CAS  Google Scholar 

  41. Ghose, S., Rahman, MdS: J. Vac. Sci. Technol. B 34, 02L109 (2016)

    Google Scholar 

Download references

Acknowledgements

Aditya Sharma is thankful to the Vice-Chancellor and dean of research, Manav Rachna University Faridabad, for providing financial assistance and constant encouragement/support. He is also thankful to Dr. Jitendra Pal Singh (PAL, Pohang, South Korea) for helping in the collection and analysis of XAS data. This work is also partly supported by the Basic Science Research Program (NRF-2015R1A5A1009962) through the National Research Foundation of Korea (NRF) funded by the Korea government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Varshney, M., Saraswat, H. et al. Nano-structured phases of gallium oxide (GaOOH, α-Ga2O3, β-Ga2O3, γ-Ga2O3, δ-Ga2O3, and ε-Ga2O3): fabrication, structural, and electronic structure investigations. Int Nano Lett 10, 71–79 (2020). https://doi.org/10.1007/s40089-020-00295-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-020-00295-w

Keywords

Navigation