Skip to main content
Log in

Effect of Gd3+ substitution on structural, morphological, and magnetic properties of BiFeO3 nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, we report on the synthesis of Gd3+ substituted BiFeO3 nanoparticles and their structural, chemical, and magnetic characterizations. Single rhombohedral phase is obtained till x = 0.06 in Bi1-xGdxFeO3 nanoparticles, as confirmed by the Rietveld refinement of powder X-ray diffraction profiles. Beyond x = 0.06, a mixed phase consisting of both rhombohedral and orthorhombic structures is established. This kind of atom substitution-driven structural change is also confirmed by Raman spectroscopy. Core-level X-ray photoemission spectroscopy reveals the dominance of the Fe3+ oxidation state and also provides an estimation of oxygen vacancies which are found to be ~ 28% and 17% for x = 0.06 and 0.15 samples, respectively. The width of the hysteresis loop increases with the increase in Gd3+ concentration, suggesting an enhancement in magnetic character in contrast with pure BiFeO3 nanoparticles, and ferromagnetic contribution to the magnetization is estimated to a maximum value of 0.50 emu/g for x = 0.12.

Graphical Abstract

Highlights

  • BixGd1-xFeO3 nanoparticles with x = 0.0, 0.03, 0.06, 0.10, 0.12 and 0.15 were synthesized by sol-gel method.

  • Substitutional driven structural phase transformation from rhombohedral (R3c) to orthorhombic (Pnma) has been observed.

  • Reduction in oxygen vacancies along with dominance of Fe3+ oxidation state has been observed.

  • Partial suppression of spiral spin structure, surface effect in nanoparticles and DM interactions all together contributed for the observed weak ferromagnetic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiang Q, Gong SJ (2005) The investigation of the magnetodielectric effect in multiferroic ferroelectromagnets. Eur Phys J B 43(3):333–340

    Article  CAS  Google Scholar 

  2. Fiebig M, Lottermoser T, Fröhlich D, Goltsev AV, Pisarev RV (2002) Observation of coupled magnetic and electric domains. Nature 419(6909):818–820

    Article  CAS  Google Scholar 

  3. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442(7104):759–765

    Article  CAS  Google Scholar 

  4. Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S et al. (2006) Ferroelectric thin films: Review of materials, properties, and applications. J Appl Phys 100(5):051606

    Article  Google Scholar 

  5. Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B et al. (2018) Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat Commun 9:1813

    Article  Google Scholar 

  6. Saxena P, Kumar A, Sharma P, Varshney D (2016) Improved dielectric and ferroelectric properties of dual-site substituted rhombohedral structured BiFeO3 multiferroics. J Alloy Compd 682:418–23

    Article  CAS  Google Scholar 

  7. Fei L, Hu Y, Li X, Song R, Sun L, Huang H et al. (2015) Electrospun Bismuth Ferrite Nanofibers for Potential Applications in Ferroelectric Photovoltaic Devices. ACS Appl Mater Interfaces 7(6):3665–3670

    Article  CAS  Google Scholar 

  8. Li Q, Bao S, Liu Y, Li Y, Jing Y, Li J (2016) Influence of lightly Sm-substitution on crystal structure, magnetic and dielectric properties of BiFeO3 ceramics. J Alloy Compd 682:672–678

    Article  CAS  Google Scholar 

  9. You T, Du N, Slesazeck S, Mikolajick T, Li G, Bürger D et al. (2014) Bipolar Electric-Field Enhanced Trapping and Detrapping of Mobile Donors in BiFeO3 Memristors. ACS Appl Mater Interfaces 6(22):19758–19765

    Article  CAS  Google Scholar 

  10. Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L, Zhao T et al. (2004) Multiferroic BaTiO3-CoFe2O4 Nanostructures. Science 303(5658):661–663

    Article  CAS  Google Scholar 

  11. Hur N, Park S, Sharma PA, Guha S, Cheong SW (2004) Colossal Magnetodielectric Effects in DyMn2O5. Phys Rev Lett 93:107207–107210

    Article  CAS  Google Scholar 

  12. Kuang D, Tang P, Ding X, Yang S, Zhang Y (2015) Effects of Y doping on multiferroic properties of sol–gel deposited BiFeO3 thin films. J Mater Sci: Mater Electron 26(5):3001–3007

    CAS  Google Scholar 

  13. Dubey A, Salamon S, Attanayake SB, Ibrahim S, Landers J, Castillo ME et al. (2022) Rare-earth doped BiFe0.95Mn0.05O3 nanoparticles for potential hyperthermia applications. Front Bioeng Biotechno 10:01–12

    CAS  Google Scholar 

  14. Banerjee P, Franco A (2016) Rare earth and transition metal doped BiFeO3 ceramics: structural, magnetic and dielectric characterization. J Mater Sci: Mater Electron 27(6):6053–6059

    CAS  Google Scholar 

  15. Ilić NI, Bobić JD, Stojadinović BS, Džunuzović AS, Petrović MMV, Dohčević-Mitrović ZD et al. (2016) Improving of the electrical and magnetic properties of BiFeO3 by doping with yttrium. Mater Res Bull 77:60–69

    Article  Google Scholar 

  16. Sun W, Li JF, Zhu FY, Yu Q, Cheng LQ, Zhou Z (2015) Thickness-dependent phase boundary in Sm-doped BiFeO3 piezoelectric thin films on Pt/Ti/SiO2/Si substrates. Phys Chem Chem Phys 17(30):19759–19765

    Article  CAS  Google Scholar 

  17. Kumar P, Kar M (2014) Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloy Compd 584:566–572

    Article  CAS  Google Scholar 

  18. Kazhugasalamoorthy S, Jegatheesan P, Mohandoss R, Giridharan NV, Karthikeyan B, Joseyphus RJ et al. (2010) Investigations on the properties of pure and rare earth modified bismuth ferrite ceramics. J Alloy Compd 493(1-2):569–572

    Article  CAS  Google Scholar 

  19. Nair SG, Satapathy J, Kumar NP (2020) Influence of synthesis, dopants, and structure on electrical properties of bismuth ferrite (BiFeO3). Appl Phys A 126(11):836

    Article  CAS  Google Scholar 

  20. Pradhan SK, Roul BK (2012) Electrical behavior of high resistivity Ce-doped BiFeO3 multiferroic. Phys B (Amst, Neth) 407(13):2527–2532

    Article  CAS  Google Scholar 

  21. Zhang XQ, Sui Y, Wang XJ, Wang Y, Wang Z (2010) Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. J Alloy Compd 507(1):157–161

    Article  CAS  Google Scholar 

  22. Pradhan AK, Zhang K, Hunter D, Dadson JB, Loiutts GB, Bhattacharya P et al. (2005) Magnetic and electrical properties of single-phase multiferroic BiFeO3. J Appl Phys 97(9):093903

    Article  Google Scholar 

  23. Kumar M, Pandey H (2023) Structural Phase Transformation, Magnetic and Optical Properties of Ho3+ Substituted BiFeO3 Nanoparticles. J Supercond Nov Magn 36(4):1269–1276

    Article  CAS  Google Scholar 

  24. Bhushan B, Wang ZX, Tol J, Dalal NS, Basumallick A, Vasanthacharya NY et al. (2012) Tailoring the Magnetic and Optical Characteristics of Nanocrystalline BiFeO3 by Ce Doping. J Am Ceram Soc 95(6):1985–1992

    Article  CAS  Google Scholar 

  25. Yan W, Hou ZL, Bi S, Cui RB, Tang M (2018) Enhanced magnetization and bias voltage-dependent dielectric properties of Sm-doped BiFeO3 multiferroic nanofibers. J Mater Sci 53(14):10249–10260

    Article  CAS  Google Scholar 

  26. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B et al. (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613):1719–1722

    Article  CAS  Google Scholar 

  27. Patel SKS, Lee JH, Kim MK, Bhoi B, Kim SK (2018) Single-crystalline Gd-doped BiFeO3 nanowires: R3c-to-Pn2(1)a phase transition and enhancement in high-coercivity ferromagnetism. J Mater Chem C 6(3):526–534

    Article  CAS  Google Scholar 

  28. Sharma AD, Sharma HB (2021) Influence of Gd doping and thickness variation on structural, morphological and optical properties of nanocrystalline bismuth ferrite thin films via sol-gel technology. J Mater Sci: Mater Electron 32(15):20612–20624

    CAS  Google Scholar 

  29. Lotey GS, Verma NK (2012) Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size. J Nanopart Res 14(3):742

    Article  Google Scholar 

  30. Reddy BP, Cui H, Sekhar MC, Vattikuti SVP, Suh Y, Park SH (2019) Influence of Gd doping on the visible-light photocatalytic activity and magnetic properties of BiFeO3 particles. Mater Res Express 6(11):115044

    Article  Google Scholar 

  31. Vashisth BK, Bangruwa JS, Gairola SP, Verma V (2018) Structural, dielectric, ferroelectric and magnetic properties of Gd doped BiFeO3. Integr Ferroelectr 194(1):21–27

    Article  CAS  Google Scholar 

  32. Philip GG, Senthamizhan A, Natarajan TS, Chandrasekaran G, Therese HA (2015) The effect of gadolinium doping on the structural, magnetic and photoluminescence properties of electrospun bismuth ferrite nanofibers. Ceram Int 41(10):13361–13365

    Article  Google Scholar 

  33. Dai HY, Ye FJ, Chen ZP, Li T, Liu DW (2018) The effect of ion doping at different sites on the structure, defects and multiferroic properties of BiFeO3 ceramics. J Alloy Compd 734:60–65

    Article  CAS  Google Scholar 

  34. Kumar P, Panda C, Kar M (2015) Effect of rhombohedral to orthorhombic transition on magnetic and dielectric properties of La and Ti co-substituted BiFeO3. Smart Mater Struct 24(4):045028

    Article  Google Scholar 

  35. Anthoniappen J, Chang WS, Soh AK, Tu CS, Vashan P, Lim FS (2017) Electric field induced nanoscale polarization switching and piezoresponse in Sm and Mn co-doped BiFeO3 multiferroic ceramics by using piezoresponse force microscopy. Acta Mater 132:174–181

    Article  CAS  Google Scholar 

  36. Ionic radii of different ions has been taken from http://abulafia.mt.ic.ac.uk/shannon/radius.php website.

  37. Golic DL, Radojkovic A, Dapcevic A, Pajic D, Dragovic J, Toric F et al. (2019) Change in structural, ferroelectric, and magnetic properties of bismuth ferrite induced by doping with gadolinium. Ceram Int 45(15):19158–19165

    Article  CAS  Google Scholar 

  38. Spaldin NA, Ramesh R (2019) Advances in magnetoelectric multiferroics. Nat Mater 18(3):203–212

    Article  CAS  Google Scholar 

  39. Kothari D, Reddy VR, Sathe VG, Gupta A, Banerjee A, Awasthi AM (2008) Raman scattering study of polycrystalline magnetoelectric BiFeO3. J Magn Magn Mater 320(3-4):548–552

    Article  CAS  Google Scholar 

  40. Fukumura H, Harima H, Kisoda K, Tamada M, Noguchi Y, Miyayama M (2007) Raman scattering study of multiferroic BiFeO3 single crystal. J Magn Magn Mater 310(2):e367–e369

    Article  CAS  Google Scholar 

  41. Porporati AA, Tsuji K, Valant M, Axelsson AK, Pezzotti G (2010) Raman tensor elements for multiferroic BiFeO3 with rhombohedral R3c symmetry. J Raman Spectrosc 41(1):84–87

    Article  CAS  Google Scholar 

  42. Chen P, Xu XS, Koenigsmann C, Santulli AC, Wong SS, Musfeldt JL (2010) Size-Dependent Infrared Phonon Modes and Ferroelectric Phase Transition in BiFeO3 Nanoparticles. Nano Lett 10(11):4526–4532

    Article  CAS  Google Scholar 

  43. Hermet P, Goffinet M, Kreisel J, Ghosez P (2007) Raman and infrared spectra of multiferroic bismuth ferrite from first principles. Phys Rev B 75(22):220102(R)

    Article  Google Scholar 

  44. Ederer C, Spaldin NA (2005) Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite. Phys Rev B 71(22):224103

    Article  Google Scholar 

  45. Sosnowska I, Peterlinneumaier T, Steichele E (1982) Spiral Magnetic-Ordering in Bismuth Ferrite. J Phys C Solid State 15(23):4835–4846

    Article  CAS  Google Scholar 

  46. Huang FZ, Wang ZJ, Lu XM, Zhang JT, Min KL, Lin WW et al. (2013) Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure. Sci Rep. 3:2907

    Article  Google Scholar 

  47. Sakar M, Balakumar S, Saravanan P, Bharathkumar S (2015) Compliments of confinements: substitution and dimension induced magnetic origin and band-bending mediated hotocatalytic enhancements in Bi1−xDyxFeO3 particulate and fiber nanostructures. Nanoscale 7:10667–10679

    Article  CAS  Google Scholar 

  48. Chauhan S, Kumar M, Chhoker S, Katyal SC, Singh M (2016) Substitution driven structural and magnetic transformation in Ca-doped BiFeO3 nanoparticles. RSC Adv 6:43080–43090

    Article  CAS  Google Scholar 

  49. Zhan X, Sui Y, Wang X, Wang Y, Wang Z (2010) Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. J Alloy Compd 507(1):157–161

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the CeNSE facility at the Indian Institute of Science, Bengaluru, India, for RAMAN, TEM, and XPS measurements. HP acknowledges the SVNIT Institute seed money grant 2021-22/DOP/04.

Author contributions

MK conceptualized the idea supervised the work and edited the manuscript. SC performed experimental work and analysed the results. HP analysed the results and prepared the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Chauhan, S. & Pandey, H. Effect of Gd3+ substitution on structural, morphological, and magnetic properties of BiFeO3 nanoparticles. J Sol-Gel Sci Technol 109, 272–282 (2024). https://doi.org/10.1007/s10971-023-06269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06269-6

Keywords

Navigation