Skip to main content
Log in

High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A low-cost, safe, and environmentally friendly preparation method, TiO2 reduced with self-made TiH2 via industrial tailing titanium powder, is successfully carried out to fabricate Ti4O7 powder, then a Ti4O7 electrode is prepared by the current powder and used to degrade methylene blue (MB). The phase, morphology, and conductivity of the Ti4O7 powder and electrode are studied, showing that our method can obtain a single-phase powder at a lower temperature, and the Ti4O7 electrode conductivity (1048.6 S/cm) is 44.2% higher than the graphite electrode. The effects of current density, electrolyte concentration, and initial MB concentration on MB removal rate are studied. These results show that both low and high concentrations of MB could achieve rapid degradation in the electrochemical oxidation system using the Ti4O7 electrode under low current density (10 mA/cm2), and the removal rate is better than other electrode materials including Pt, Ti/SnO2 and Pt/MnO2. In addition, the kinetic process of electrochemical oxidation and degradation of MB on Ti4O7 electrode is investigated and conformed to the first-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M.R. Samarghandi, A. Dargahi, A. Shabanloo, H.Z. Nasab, Y. Vaziri, and A. Ansari, Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: Optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arabian J. Chem. 13, 6847 (2020).

    Article  CAS  Google Scholar 

  2. S.J. Kram, B.L. Kram, J.C. Cook, K.L. Ohman, and K. Ghadimi, Hydroxocobalamin or methylene blue for vasoplegic syndrome in adult cardiothoracic surgery. J. Cardiothorac. Vasc. Anesth. 36, 469 (2021).

    Article  Google Scholar 

  3. L. Liu, D. He, F. Pan, R. Huang, H. Lin, and X. Zhang, Comparative study on treatment of methylene blue dye wastewater by different internal electrolysis systems and COD removal kinetics, thermodynamics and mechanism. Chemosphere. 238, 124671 (2020).

    Article  CAS  Google Scholar 

  4. G.R. de Oliveira, N.S. Fernandes, J.V.D. Melo, D.R. da Silva, C. Urgeghe, C. A. Martínez-Huitle, Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters. Chem. Eng. J. 168, 208 (2011).

  5. H. Guo, C. Bi, C. Zeng, W. Ma, L. Yan, K. Li, and K. Wei, Camellia oleifera seed shell carbon as an efficient renewable bio-adsorbent for the adsorption removal of hexavalent chromium and methylene blue from aqueous solution. J. Mol. Liq. 249, 629 (2018).

    Article  CAS  Google Scholar 

  6. I. Ayouch, I. Kassem, Z. Kassab, I. Barrak, A. Barhoun, J. Jacquemin, K. Draoui, and M. Achaby, Crosslinked carboxymethyl cellulose-hydroxyethyl cellulose hydrogel films for adsorption of cadmium and methylene blue from aqueous solutions. Surf. Interfaces. 24, 101124 (2021).

    Article  CAS  Google Scholar 

  7. G. Fadillah, T.A. Saleh, S. Wahyuningsih, E. Ninda Karlina Putri, and S. Febrianastuti, Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chem. Eng. J. 378, 122140 (2019).

    Article  CAS  Google Scholar 

  8. S. Kavitha, N. Jayamani, D. Barathi, Investigation on SnO2/TiO2 nanocomposites and their enhanced photocatalytic properties for the degradation of methylene blue under solar light irradiation. Bull. Mater. Sci. 44 (2021).

  9. K.F. He, E.N. Xu, Y. Liu, and W.P. Chen, Hydrogenation of nano-structured TiO2 photocatalyst through an electrochemical method. J. Nanosci. Nanotechnol. 15, 303 (2015).

    Article  CAS  Google Scholar 

  10. D. Štrbac, C.A. Aggelopoulos, G. Štrbac, M. Dimitropoulos, M. Novaković, T. Ivetić, and S.N. Yannopoulos, Photocatalytic degradation of naproxen and methylene blue: Comparison between ZnO, TiO2 and their mixture. Process Saf. Environ. Prot. 113, 174 (2018).

    Article  Google Scholar 

  11. D. Liu, R. Tian, J. Wang, E. Nie, X. Piao, X. Li, and Z. Sun, Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrode under visible light irradiation. Chemosphere 185, 574 (2017).

    Article  CAS  Google Scholar 

  12. Q. Qin, Y. Liu, X. Li, T. Sun, and Y. Xu, Enhanced heterogeneous Fenton-like degradation of methylene blue by reduced CuFe2O4. RSC Adv. 8, 1071 (2018).

    Article  CAS  Google Scholar 

  13. E. Lacasa, P. Cañizares, F.C. Walsh, M.A. Rodrigo, and C. Ponce-de-León, Removal of methylene blue from aqueous solutions using an Fe2+ catalyst and in-situ H2O2 generated at gas diffusion cathodes. Electrochim. Acta. 308, 45 (2019).

    Article  CAS  Google Scholar 

  14. M. Panizza, A. Barbucci, R. Ricotti, and G. Cerisola, Electrochemical degradation of methylene blue. Sep. Purif. Technol. 54, 382 (2007).

    Article  CAS  Google Scholar 

  15. N.H. Jawad, S.T. Najim, Removal of methylene blue by direct electrochemical oxidation method using a graphite anode, IOP Conf. Ser.: Mater. Sci. Eng. 454, 12023 (2018).

  16. M.S. Anantha, S. Olivera, C. Hu, B.K. Jayanna, N. Reddy, K. Venkatesh, H.B. Muralidhara, R. Naidu, Comparison of the photocatalytic, adsorption and electrochemical methods for the removal of cationic dyes from aqueous solutions, Environ. Technol. Innovation. 17, 100612 (2020).

  17. D. Zhi, J. Zhang, J. Wang, L. Luo, Y. Zhou, and Y. Zhou, Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti4O7 and Ti/RuO2-IrO2 anodes. J. Environ. Manage. 265, 110571 (2020).

    Article  CAS  Google Scholar 

  18. G. Wang, Y. Liu, J. Ye, and W. Qiu, Synthesis, microstructural characterization, and electrochemical performance of novel rod-like Ti4O7 powders. J. Alloys Compd. 704, 18 (2017).

    Article  CAS  Google Scholar 

  19. X. Zhao, X. Zhang, B. Zhao, F. Jia, D. Han, Y. Fan, L. Niu, and A. Ivaska, A direct oxygen vacancy essential Z-scheme C@Ti4O7/g-C3N4 heterojunctions for visible-light degradation towards environmental dye pollutants. Appl. Surf. Sci. 525, 146486 (2020).

    Article  CAS  Google Scholar 

  20. G. Wang, Y. Liu, J. Ye, X. Yang, and Z. Lin, Formation mechanism of Ti4O7 phase prepared by carbothermal reduction reaction. J. Am. Ceram. Soc. 103, 3871 (2020).

    Article  CAS  Google Scholar 

  21. W. He, Y. Liu, J. Ye, and G. Wang, Electrochemical degradation of azo dye methyl orange by anodic oxidation on Ti4O7 electrodes. J. Mater. Sci. Mater. Electron. 29, 14065 (2018).

    Article  CAS  Google Scholar 

  22. C. Wang, F. Wang, M. Xu, C. Zhu, W. Fang, and Y. Wei, Electrocatalytic degradation of methylene blue on Co doped Ti/TiO2 nanotube/PbO2 anodes prepared by pulse electrodeposition. J. Electroanal. Chem. 759, 158 (2015).

    Article  CAS  Google Scholar 

  23. J.P.S.D. Pontes, P.R.F. da Costa, D.R. da Silva, S. Garcia-Segura, and C.A. Martínez-Huitle, Methylene blue decolorization and mineralization by means of electrochemical technology at pre-pilot plant scale: Role of the electrode material and oxidants. Int. J. Electrochem. Sci. 11, 4878 (2016).

    CAS  Google Scholar 

  24. X. Zhang, X. Lin, M. He, H. Li, W. Wang, and S.-T. Yang, Carbon coated titanium electrode for the electrolytic decoloration of methylene blue. J. Water Process Eng. 13, 183 (2016).

    Article  Google Scholar 

  25. A. Alaoui, K. El Kacemi, K. El Ass, S. Kitane, and S. El Bouzidi, Activity of Pt/MnO2 electrode in the electrochemical degradation of methylene blue in aqueous solution. Sep. Purif. Technol. 154, 281 (2015).

    Article  CAS  Google Scholar 

  26. K. Yang, Y. Liu, and J. Qiao, Electrodeposition preparation of Ce-doped Ti/SnO2-Sb electrodes by using selected addition agents for efficient electrocatalytic oxidation of methylene blue in water. Sep. Purif. Technol. 189, 459 (2017).

    Article  CAS  Google Scholar 

  27. R.N. Singh, J.P. Singh, H. Nguyencong, and P. Chartier, Effect of partial substitution of Cr on electrocatalytic properties of MnFe2O4 towards O2-evolution in alkaline medium. Int. J. Hydrogen Energy. 31, 1372 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Nature Science Foundation of China (52174347).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by FX and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jinwen Ye.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, F., Ye, J., Liu, Y. et al. High-Performance Electrochemical Degradation of Methylene Blue by a Ti4O7 Anode Prepared via Industrial Tailing Titanium Powder. J. Electron. Mater. 51, 3560–3568 (2022). https://doi.org/10.1007/s11664-022-09596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09596-6

Keywords

Navigation