Skip to main content
Log in

Ethylene Glycol-Assisted Hydrothermal Synthesis and Structural and Dielectric Properties of \({\text{SrBi}}_{{{\text{2 - y}}}} Y_{{\text{y}}} Nb_{{{\text{2 - x}}}} V_{{\text{x}}} {\text{O}}_{9} \) (0\( \le \)x\( \le \)0.2 and 0\( \le \)y\( \le \)0.2) Ceramics

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ethylene glycol-assisted hydrothermal synthesis was used to prepare \( \mathrm{SrBi}_{\mathrm{2}-\mathrm{y}}\mathrm{Y}_{\mathrm{y}}\mathrm{Nb}_{\mathrm{2}-\mathrm{x}}\mathrm{V}_{\mathrm{x}}\mathrm{O}_{9} \) (x/y= 0/0, 0/0.2, 0.05/0.1, 0.1/0.05 and 0.2/0) ceramics. Several techniques were used for determining the crystal structure, microstructure, and dielectric properties. All compounds crystallize in the orthorhombic structure without any minor secondary phases. However, there is no correlation between lattice parameters and V/Y ratios. A slight difference was noticeable in the Fourier transform infrared spectroscopy (FTIR) characteristics of these samples. Scanning electron microscopy (SEM) analysis showed that the ceramics also consist of plate-like grains. It turned out that 0.05/0.1 or 0.1/0.05 ratios enhance the dielectric properties at room temperature. As a function of temperature, the bismuth ion, which has a lone pair electron, might emphasize the polarizability, leading to an increase in the Curie temperature. Furthermore, the high ac conductivity is caused by a large amount of space charge carriers arising mainly from oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Slimani, A. Selmi, E. Hannachi, M. Almessiere, G. AlFalah, L.F. AlOusi, G. Yasin and M. Iqbal, J. Phys. Chem. Solids. 156, 110–183 (2021)

    Article  Google Scholar 

  2. Y. Slimani, M. Almessiere, S.E. Shirsath, E. Hannachi, G. Yasin, A. Baykal, B. Ozcelik and I. Ercan, J. Magn. Magn. Mater. 510, 166–933 (2020)

    Article  Google Scholar 

  3. Y. Slimani, A. Selmi, E. Hannachi, M. Almessiere, M. Mumtaz, A. Baykal and I. Ercan, J. Mater. Sci.: Mater. Electron. 30(14), 13–518 (2019)

    Google Scholar 

  4. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal and T. Alagesan, J. Magn. Magn. Mater. 486, 165–254 (2019)

    Article  Google Scholar 

  5. Y. Slimani, M. Almessiere, E. Hannachi, M. Mumtaz, A. Manikandan, A. Baykal and F.B. Azzouz, Ceram. Int. 45(6), 6835 (2019)

    Article  Google Scholar 

  6. E. Hannachi, Y. Slimani, A. Ekicibil, A. Manikandan and F.B. Azzouz, J. Mater. Sci.: Mater. Electron. 30(9), 8813 (2019)

    Google Scholar 

  7. H. Ishiwara, Int. J. High Speed Electron. Syst. 12, 323 (2002)

    Article  Google Scholar 

  8. P. Singh, R.K. Jha, R.K. Singh and B.R. Singh, Superlatt Microstruct. 121, 63 (2018)

    Article  Google Scholar 

  9. J.D. Bobić, M.M. Vijatović Petrović, J. Banys and B.D. Stojanović, Ceram. Int. 39, 8057 (2013)

    Article  Google Scholar 

  10. L. Yu, J. Hao, Z. Xu, W. Li, R. Chu and G. Li, Ceram. Int. 42, 14–854 (2016)

    Google Scholar 

  11. M. Afqir, A. Tachafine, D. Fasquelle, M. Elaatmani, J.-C. Carru, A. Zegzouti and M. Daoud, J. Phys. Chinese 56(3), 1158 (2018)

    Article  CAS  Google Scholar 

  12. J. Bobić, M.V. Petrović, J. Banys and B. Stojanović, Ceram. Int. 39(7), 8049 (2013)

    Article  Google Scholar 

  13. J.N. Kiran, M. Sreenivasulu, K. Sambasiva Rao, K. Srinivasa Rao, S. Nagamani and T. Nagamalleswari, Mater. Today Proc. 19, 2662 (2019)

    Google Scholar 

  14. N. Sangula, N.K. Jaladi, S.B.R. Bhimavarapu, N.R. B, A.K. Jaladi and S.R. Konapala, ECS J. Solid State Sci. Technol. 10, 002 (2021)

    Article  Google Scholar 

  15. H. Gu, J. Xue and J. Wang. Appl. Phys. Lett. 79, 2063 (2001)

    Google Scholar 

  16. H. Naceur, A. Megriche and M. El Maaoui, J. Adv. Ceram. 3, 30 (2014)

    Article  Google Scholar 

  17. T. Wei, B. Jia, L. Shen, C. Zhao, L. Wu, B. Zhang, X. Tao, S. Wu and Y. Liang, J. Eur. ceram. Soc. 11, 4153 (2020)

    Article  Google Scholar 

  18. B.R. Kumar, N.V. Prasad, G. Prasad and G.S. Kumar, Mater. Today Proc. 11, 1040 (2019)

    Google Scholar 

  19. M. Zhang, X. Xu, Y. Yue, M. Palma, M.J. Reece and H. Yan, Mater. Des. 200, 109447 (2021)

    Article  CAS  Google Scholar 

  20. A. Stokes and A. Wilson, Proc. R. Soc. A. 56(3), 174 (1944)

    CAS  Google Scholar 

  21. J. Al Boukhari, A. Khalaf, R. Sayed Hassan and R. Awad, Appl. Phys. A Mater. Sci. Process 126(5), 1 (2020)

  22. R.D. Shannon and C.T. Prewitt, J. Inorg. Nucl. Chem. 32, 1441 (1970)

    Article  Google Scholar 

  23. S. Jain and A.K. Jha, J. Electroceramics 24, 63 (2008)

    Google Scholar 

  24. P. Goel and K. Yadav, Phys. B: Condens. Matter. 382(1–2), 251 (2006)

    Google Scholar 

  25. S. Jain, A. Jha, J. Electroceramics. 24(1), 63 (2010)

    Article  Google Scholar 

  26. H. Singh and K.L. Yadav, Ceram. Int. 41, 9295 (2015)

    Google Scholar 

  27. S. Chihaoui, M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou and H. Guermazi, J. Alloys Compd. 771, 334 (2019)

    Article  Google Scholar 

  28. S. Lanfredi, I.A. Brito, C. Polini and M.A. Nobre, J. Appl. Spectrosc. 79, 260 (2012)

    Article  Google Scholar 

  29. W.D. Kingery, H.K. Bowen and D.R. Uhlmann, Introduction to Ceramics, 2nd edn. (Wiley, New York, 1976)

    Google Scholar 

  30. D.P. Singh, K. Shahi and K.K. Kar, Solid State Ionics 287, 96 (2016)

    Article  Google Scholar 

  31. B. Zulhadjri, A.A. Prijamboedi, N. Nugroho, A. Mufti and T.T.M. Fajar, J. Solid State Chem. 184, 1323 (2011)

    Article  Google Scholar 

  32. Z.Y. Zhou, X.L. Dong and H.X. Yan, Scr. Mater. 55, 794 (2006)

    Google Scholar 

  33. C. Li, H. Xiang, J. Chen and L. Fang, Ceram. Int. 42, 11 (2016)

    Google Scholar 

  34. Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, C. Nguyen and G. Cao, J. Appl. Phys. 90, 5302 (2001)

    Google Scholar 

  35. S. Jain and A.K. Jha, J. Electrocer 24, 63 (2010)

    Article  Google Scholar 

  36. K. Shi, L. Peng, M. Li, Z. Zhou, K. Jiang, J. Zhang, Z. Hu, X. Dong and J. Chu, J. Alloys Compd. 653, 174 (2015)

    Article  Google Scholar 

  37. M.S. Wu, Z.M. Tian, S.L. Yuan, H.N. Duan and Y. Qiu, Phys. Lett. Sect. A Gen. At. Solid State Phys. 376, 2066 (2012)

    Google Scholar 

  38. E. Masiukaite, J. Banys, R. Sobiestianskas, T. Ramoska, V.A. Khomchenko and D.A. Kiselev, Solid State Ionics 188, 52 (2011)

    Article  Google Scholar 

  39. L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, C. Hu and H. Fan, Appl. Phys. A. 104(4), 1051 (2011)

    Article  Google Scholar 

  40. F. Rehman, H.-B. Jin and J.-B. Li, RSC Adv. 6(41), 35 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Afqir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afqir, M., Elaatmani, M., Zegzouti, A. et al. Ethylene Glycol-Assisted Hydrothermal Synthesis and Structural and Dielectric Properties of \({\text{SrBi}}_{{{\text{2 - y}}}} Y_{{\text{y}}} Nb_{{{\text{2 - x}}}} V_{{\text{x}}} {\text{O}}_{9} \) (0\( \le \)x\( \le \)0.2 and 0\( \le \)y\( \le \)0.2) Ceramics. J. Electron. Mater. 51, 3863–3872 (2022). https://doi.org/10.1007/s11664-022-09578-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09578-8

Keywords

Navigation