Skip to main content
Log in

Weak Ferromagnetism in the FeCr2O4 Semiconductor Spinel with Half-Metallic Feature in the Ground State

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Materials with multifunctional properties are currently being studied for countless technological applications. In the present work, an experimental and theoretical study of the iron-chromite spinel FeCr2O4 produced by the solid-state reaction technique is reported. Structural analysis from x-ray diffraction experiments revealed the crystallization of the material into a cubic structure and morphological and compositional studies showed the granular character, with nanometric and micrometric dimensions whose compositions are as expected from its chemical stoichiometry. Optical characterization reveals semiconducting behavior with bandgap 1.52 eV and the magnetic response shows weak ferromagnetic character at room temperature. The density of electronic states in the ground state evidences characteristic semiconducting for one spin polarization and conducting for the other close to the Fermi level, which is compatible with a half-metallic behavior with magnetic moment of 2.0 µB per unit cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Rafiq, A. Javed, M.N. Rasul, M. Nadeem, F. Iqbal, A. Hussain, Structural, electronic, magnetic and optical properties of AB2O4 (A = Ge, Co and B = Ga, Co) spinel oxides. Mater. Chem. Phys. 257, 123794 (2021).

  2. Q. Zhao, Z. Yan, C. Chen, and J. Chen, Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chem. Rev. 117, 10121 (2017).

    Article  CAS  Google Scholar 

  3. A. Šutka, and K.A. Gross, Spinel Ferrite Oxide Semiconductor Gas Sensors. Sensor Actuat. B-Chem 222, 95 (2016).

    Article  Google Scholar 

  4. H. Suzuki, T. Furubayashi, G. Cao, H. Kitazawa, A. Kamimura, K. Hirata, and T. Matsumoto, Metal-Insulator Transition and Superconductivity in Spinel-Type System Cu1-xZnxIr2S4. J. Phys. Soc. Japan 68, 2495 (1999).

    Article  CAS  Google Scholar 

  5. K. Kawano, S.B. Madhu, M. Mizutamari, and R. Nakata, Paramagnetic Properties of the Spinel-Type Al1-xMnx-Sulphate Salts for its Pillared Intercalation into a Clay Mineral. J. Phys. Chem. Solids 64, 477 (2003).

    Article  CAS  Google Scholar 

  6. H.M.I. Abdallah, and T. Moyo, Superparamagnetic Behavior of MnxNi1-xFe2O4 spinel Nanoferrites. J. Magn. Magn. Mater. 361, 170 (2014).

    Article  CAS  Google Scholar 

  7. T. Fukai, Y. Furukawa, S. Wada, and K. Miyatani, NMR Study of Antiferromagnetic Spinel CoCo2O4 in Paramagnetic and Ordered State. J. Phys. Soc. Japan 65, 4067 (1996).

    Article  CAS  Google Scholar 

  8. I.P. Muthuselvam, and R.N. Bhowmik, Structural phase stability and magnetism in Co2FeO4 spinel oxide. Solid State Sci. 11, 719 (2009).

    Article  CAS  Google Scholar 

  9. A. Hakeem, T. Alshahrani, G. Muhammad, M.H. Alhossainy, A. Laref, A.R. Khan, I. Ali, H.M.T. Farid, T. Ghrib, S.R. Ejaz, and R.Y. Khosa, Magnetic, dielectric and structural properties of spinel ferrites synthesized by sol-gel method. J. Mater. Res. Technol. 11, 158 (2021).

    Article  CAS  Google Scholar 

  10. J.G. Azadani, W. Jiang, J.-P. Wang, T. Low, Ferromagnetic phase of the spinel compound MgV2O4 and its spintronics properties. Phys. Rev. B 102, 155144 (2020).

  11. A. Sundaresan, N.V. Ter-Oganessian, Magnetoelectric and multiferroic properties of spinels. J. Appl. Phys. 129, 060901 (2021).

  12. L.C. Garrido, C.E. Deluque Toro, I. Díaz, D.A. Landínez Téllez, J. Roa-Rojas, First-principles calculations to investigate elastic, electronic and thermophysical properties of the Dy2Bi2Fe4O12 ferromagnetic semiconductor. Semicond. Sci. Technol. 36, 095015 (2021).

  13. S. Wang, H. Tian, C. Ren, J. Yu, and M. Sun, Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci. Rep. 8, 12009 (2018).

    Article  Google Scholar 

  14. S. Wang, M.S. Ukhtary, R. Saito, Strain effect on circularly polarized electroluminescence in transition metal dichalcogenides. Phys. Rev. Res. 2, 033340 (2020).

  15. K. Hoang, M. Oh, and Y. Choi, Electronic structure, polaron formation, and functional properties in transition-metal tungstates. RSC Adv. 8, 4191 (2018).

    Article  CAS  Google Scholar 

  16. K. Hoang, and M.D. Johannes, Defect chemistry in layered transition-metal oxides from screened hybrid density functional calculations. J. Mater. Chem. A 2, 5224 (2014).

    Article  CAS  Google Scholar 

  17. K. Hoang, and M. Johannes, Defect Physics and Chemistry in Layered Mixed Transition Metal Oxide Cathode Materials: (Ni Co, Mn) vs (Ni Co, Al). Chem. Mater. 28, 1325 (2016).

    Article  CAS  Google Scholar 

  18. S.A. Wolf, J. Lu, M.R. Stan, E. Chen, and D.M. Treger, The Promise of Nanomagnetics and Spintronics for Future Logic and Universal Memory. Proc. IEEE 98, 2155–2168 (2010). https://doi.org/10.1109/JPROC.2010.2064150.

    Article  Google Scholar 

  19. L. Chen, S. Yan, P.F. Xu, J. Lu, W.Z. Wang, J.J. Deng, X. Qian, Y. Ji, J.H. Zhao, Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga,Mn)As films with high ferromagnetic transition temperature. Appl. Phys. Lett. 95, 182505 (2009).

  20. M.C. Bennett, M.C. Aronson, D.A. Sokolov, C. Henderson, and Z. Fisk, Ferromagnetism, superconductivity and secondary phases in the dilute magnetic semiconductor Pt1−xRExSb2 (RE = La, Ce, Gd, Yb). J. Alloys Compd. 400, 2 (2005).

    Article  CAS  Google Scholar 

  21. C. Benhalima, S. Amari, L. Beldi, and B. Bouhafs, First-Principles Study of Ferromagnetism in Iron Chromite Spinels: FeCr2O4 and CrFe2O4. SPIN 9, 1950014 (2019).

    Article  CAS  Google Scholar 

  22. W. Kim, C.S. Kim, Spin-ordering Transition and Distortion of Local Sites in Spinel Fe0.9Cd0.1Cr2O4 by Using Mössbauer Spectroscopy. J. Korean Phys. Soc. 58, 276 (2011).

  23. K. Singh, A. Maignan, C. Simon, C. Martin, FeCr2O4 and CoCr2O4 spinels: Multiferroicity in the collinear magnetic state? Appl. Phys. Lett. 99, 172903 (2011).

  24. K. Tomiyasu, H. Hiraka, K. Ohoyama, K. Yamada, Resonance-Like Magnetic Excitations in Spinel Ferrimagnets FeCr2O4 and NiCr2O4 Observed by Neutron Scattering. J. Phys. Soc. Japan 77, 124703 (2008).

  25. D.A. Landínez Téllez, D. Martínez Buitrago, E.W. Barrera, J. Roa-Rojas, Crystalline structure, magnetic response and electronic properties of RE2MgTiO6 (RE=Dy, Gd) double perovskites. J. Mol. Struct. 1067, 205 (2014).

  26. C.E. Alarcón-Suesca, C.E. Deluque Toro, A.V. Gil Rebaza, D.A. Landínez Téllez, J. Roa-Rojas, Ab-initio studies of electronic, structural and thermophysical properties of the Sr2TiMoO6 double perovskite. J. Alloys Compd. 771, 1080 (2019).

  27. B.H. Toby, and R.B. Von Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544 (2013).

    Article  CAS  Google Scholar 

  28. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran and L. D. Marks, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria), 2018. ISBN 3-9501031-1-2.

  29. P. Hohenberg, and W. Khon, Inhomogeneous Electron Gas. Phys. Rev. B 864, 136 (1964).

    Google Scholar 

  30. W. Khon, and L.S. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A 1133, 140 (1965).

    Google Scholar 

  31. D.A. Andersson, and C.R. Stanek, Mixing and non-stoichiometry in Fe–Ni–Cr–Zn–O spinel compounds: density functional theory calculations. Phys. Chem. Chem. Phys. 15, 15550 (2013).

    Article  CAS  Google Scholar 

  32. Ş Uğur, S. Akbudak, A. Kushwaha, and G. Bayrak, Study of structural, elastic, electronic, and vibrational properties of MRh2O4 (M = Cd and Zn) spinels: DFT-based calculations. J. Mol. Model. 26, 140 (2020).

    Article  Google Scholar 

  33. J.A. Cuervo Farfán, C.E. Deluque Toro, C.A. Parra Vargas, D.A. Landínez Téllez, J. Roa-Rojas, Experimental and theoretical determination of physical properties of Sm2Bi2Fe4O12 ferromagnetic semiconductors. J. Mater. Chem. C 8, 14925 (2020).

  34. C. E. Deluque Toro, A. S. Mosquera Polo, A. V. Gil Rebaza, D. A. Landínez Téllez, J. Roa-Rojas, Ab Initio study of the electronic structure, elastic properties, magnetic feature and thermodynamic properties of the Ba2NiMoO6 material. J. Low Temp. Phys. 192, 265 (2018).

  35. P. Blaha, K.Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

  36. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  37. E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, and R. Gladyshevskii, TYPIX Standardized and crystal chemical characterization of inorganic structure types. Gmelein Handbook of Inorganic and Organometallic Chemistry, 8th ed., (Berlin: Springer, 1993).

    Google Scholar 

  38. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671 (2012).

    Article  CAS  Google Scholar 

  39. V. Kumar, S.K. Sharma, T. Sharma, and V. Singh, Band gap determination in thick films from reflectance measurements. Optical Mater. 12, 115 (1999).

    Article  CAS  Google Scholar 

  40. A.A. Christy, O.M. Kvalheim, and R.A. Velapoldi, Quantitative analysis in diffuse reflectance spectrometry: A modified Kubelka-Munk equation. Vib. Spectrosc. 9, 19 (1995).

    Article  CAS  Google Scholar 

  41. T. Ramachandran, and F. Hamed, The effect of fuel to nitrates ratio on the properties of FeCr2O4 nanopowders. Mater. Res. Bull. 95, 104 (2017).

    Article  CAS  Google Scholar 

  42. S. Nakamura, and A. Fuwa, Spin Order in FeCr2O4 Observed by Mössbauer Spectroscopy. Phys. Procedia 75, 747 (2015).

    Article  CAS  Google Scholar 

  43. V.R. Estrada Contreras, C.E. Alarcón Suesca, C.E. Deluque Toro, D.A. Landínez Téllez, J. Roa-Rojas, Crystalline, ferromagnetic-semiconductor and electronic features of the terbium-based cobalt-ferrite Tb2FeCoO6. Ceram. Int. 47, 14408 (2021).

  44. A.V. Gil Rebaza, C.E. Deluque Toro, H.H. Medina Chanduví, D.A. Landínez Téllez, J. Roa-Rojas,Thermodynamic evidence of the ferroelectric Berry phase in europium-based ferrobismuthite Eu2Bi2Fe4O12. J. Alloys Compd. 884, 161114 (2021).

  45. P. Dowben, Half Metallic Ferromagnets. J. Phys. Condens. Matter 19, 310301 (2007).

  46. S. Wang, and J. Yu, Magnetic Behaviors of 3d Transition Metal-Doped Silicane: a First-Principle Study. J Supercond. Nov. Magn. 31, 2789 (2018).

    Article  CAS  Google Scholar 

  47. W. Sa-Ke, T. Hong-Yu, Y. Yong-Hong, W. Jun, Spin and valley half metal induced by staggered potential and magnetization in silicene. Chin. Phys. B 23, 017203 (2014).

Download references

Acknowledgments

This work was partially financed by Ministerio de Ciencia y Tecnología— MINCIENCIAS, on the project FP80740-243-2019 and División de Investigación y Extensión DIEB, Universidad Nacional de Colombia Sede Bogotá.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Roa-Rojas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerón, J.A.G., Téllez, D.A.L. & Roa-Rojas, J. Weak Ferromagnetism in the FeCr2O4 Semiconductor Spinel with Half-Metallic Feature in the Ground State. J. Electron. Mater. 51, 822–830 (2022). https://doi.org/10.1007/s11664-021-09348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09348-y

Keywords

Navigation