Skip to main content
Log in

Achieving High Thermoelectric Performance of SnTe Composites with 2D WSe2

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we introduced two-dimensional (2D) WSe2 with the lowest heat conductivity to enhance thermoelectric properties of the non-toxic and cost-effective SnTe. On one hand, the improved power factor can be attributed to the enhancement of Seebeck coefficient due to the decrease of low-energy carriers and minority carriers by the addition of WSe2-SnTe p-p-type heterojunction interface barriers. On the other hand, the thermal conductivity also decreased sharply by the heightened phonon scattering from the high-density stacking faults and multiscale hierarchical architectures. Ultimately, benefiting from the dual regulation effect of the introduction of 2D WSe2 on the electro-acoustic decoupling, an improved figure of merit (ZT) of 1.0 is achieved for the composition of SnTe + 6 wt% WSe2 at 873 K, which is enhanced by 134% in comparison with the pure SnTe sample. Moreover, the meaningful attempt represents an effective and feasible strategy for mixing SnTe with other compounds by the method of ball milling.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.Y. Chen, X.M. Guo, F.J. Zhang, Q. Shi, M.J. Tang, and R. Ang, Routes for advancing SnTe thermoelectrics. J. Mater. Chem. A 8, 16790–16813 (2020).

    Article  CAS  Google Scholar 

  2. A. Debnath, K. Deb, K. Sarkar, and B. Saha, Improved thermoelectric performance in TiO2 incorporated polyaniline: a polymer-based hybrid material for thermoelectric generators. J. Electron. Mater. 49, 5028–5036 (2020).

    Article  CAS  Google Scholar 

  3. J.Q. Li, N. Yang, S.M. Li, Y. Li, F.S. Liu, and W.Q. Ao, Enhancement of thermoelectric properties in SnTe with (Ag, In) Co-doping. J. Electron. Mater. 47, 205–211 (2018).

    Article  CAS  Google Scholar 

  4. L.J. Wang, S.Q. Zheng, and H. Chen, Enhanced electronic transport properties of Se-doped SnTe1−xSex nanoparticles by microwave-assisted solvothermal method. J. Electron. Mater. 46, 2847–2853 (2017).

    Article  Google Scholar 

  5. F. Xu, A.M. Li, Z.F. Huang, Y. Rao, B. Lu, and Y. Wu, Effect of Al doping and Cu deficiency on the microstructures and thermoelectric properties of BiCuSeO-based thermoelectric materials. J. Electron. Mater. 50, 3580–3591 (2021).

    Article  CAS  Google Scholar 

  6. M.Y. Zhang, J.Y. Yang, Q.H. Jiang, L.W. Fu, Y. Xiao, Y.B. Luo, D. Zhang, Y.D. Cheng, and Z.W. Zhou, Multi-role of sodium doping in BiCuSeO on high thermoelectric performance. J. Electron. Mater. 44, 2849–2855 (2015).

    Article  Google Scholar 

  7. T.T. Khan, I.H. Kim, and S.C. Ur, Improvement of the thermoelectric properties of the perovskite SrTiO3 by Cr-doping. J. Electron. Mater. 48, 1864–1869 (2019).

    Article  CAS  Google Scholar 

  8. S.X. Lin, X.J. Tan, H.Z. Shao, J.T. Xu, Q.S. Wu, G.Q. Liu, W.H. Zhang, and J. Jiang, Ultralow lattice thermal conductivity in SnTe by manipulating the electron-phonon coupling. J. Phys. Chem. C 123, 15996–16002 (2019).

    Article  CAS  Google Scholar 

  9. Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, and G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).

    Article  CAS  Google Scholar 

  10. P. Junlabhut, P. Nuthongkum, R. Sakdanuphab, A. Harnwunggmoung, and A. Sakulkalavek, Influence of sputtering power density on the thermoelectric and mechanical properties of flexible thermoelectric antimony telluride films deposited by DC magnetron sputtering. J. Electron. Mater. 49, 2747–2754 (2020).

    Article  CAS  Google Scholar 

  11. L.N. Qiao, H.C. Wang, Y. Shen, Y.H. Lin, and C.W. Nan, Visible-active photocatalytic behaviors observed in nanostructured lead chalcogenides PbX (X = S, Se, Te). AIP Adv. 6, 5108 (2016).

    Google Scholar 

  12. P.F. Nan, R.B. Liu, Y.J. Chang, H.B. Wu, Y.M. Wang, R. Yu, J. Shen, W. Guo, and B.H. Ge, Microscopic study of thermoelectric In-doped SnTe. Nanotechnology 29, 26LT01 (2018).

    Article  Google Scholar 

  13. T. Wang, H.C. Wang, W.B. Su, J.Z. Zhai, G. Yakovleva, X. Wang, T.T. Chen, A. Romanenko, and C.L. Wang, Simultaneous enhancement of thermoelectric and mechanical performance for SnTe by nano SiC compositing. J. Mater. Chem. C 8, 7393–7400 (2020).

    Article  CAS  Google Scholar 

  14. R. Moshwan, L. Yang, J. Zou, and Z.G. Chen, Eco-friendly SnTe thermoelectric materials: progress and future challenges. Adv. Funct. Mater. 27, 03278 (2017).

    Article  Google Scholar 

  15. G.J. Tan, F.Y. Shi, S.Q. Hao, H. Chi, T.P. Bailey, L.D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J. Am. Chem. Soc. 137, 11507–11516 (2015).

    Article  CAS  Google Scholar 

  16. F.K. Guo, H.J. Wu, J.B. Zhu, H.H. Yao, Y. Zhang, B. Cui, Q. Zhang, B. Yu, S.J. Pennycook, W. Cai, C.W. Chu, and J.H. Sui, Synergistic boost of output power density and efficiency in In-Li-codoped SnTe. Proc. Natl. Acad. Sci. U. S. A. 116, 21998–22003 (2019).

    Article  CAS  Google Scholar 

  17. X.F. Tan, G.Q. Liu, J.T. Xu, X.J. Tan, H.Z. Shao, H.Y. Hu, H.C. Jiang, Y.L. Lu, and J. Jiang, Thermoelectric properties of In-Hg co-doping in SnTe: energy band engineering. J. Materiom. 4, 62 (2018).

    Article  Google Scholar 

  18. G.J. Tan, F.Y. Shi, S.Q. Hao, H. Chi, L.D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J. Am. Chem. Soc. 137, 5100–5112 (2015).

    Article  CAS  Google Scholar 

  19. Z.W. Zhou, J.Y. Yang, Q.H. Jiang, Y.B. Luo, D. Zhang, Y.Y. Ren, X. He, and J.W. Xin, Multiple effects of Bi doping in enhancing the thermoelectric properties of SnTe. J. Mater. Chem. A 4, 13171 (2016).

    Article  CAS  Google Scholar 

  20. J. He, J.T. Xu, G.Q. Liu, H.Z. Shao, X.J. Tan, Z. Liu, J.Q. Xu, H.C. Jiang, and J. Jiang, Enhanced thermopower in rock-salt SnTe–CdTe from band convergence. RSC Adv. 6, 32189–32192 (2016).

    Article  CAS  Google Scholar 

  21. G.J. Tan, F.Y. Shi, J.W. Doak, H. Sun, L.D. Zhao, P.L. Wang, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ. Sci. 8, 267–277 (2015).

    Article  CAS  Google Scholar 

  22. A. Banik, U.S. Shenoy, S. Anand, U. Waghmare, and K. Biswas, Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem. Mater. 27, 581–587 (2015).

    Article  CAS  Google Scholar 

  23. L.J. Zhang, J.L. Wang, Z.X. Cheng, Q. Sun, Z. Li, and S.X. Dou, Lead-free SnTe-based thermoelectrics: enhancement of thermoelectric performance by doping with Gd/Ag. J. Mater. Chem. A 4, 7936 (2016).

    Article  CAS  Google Scholar 

  24. Q. Zhang, B.L. Liao, Y.C. Lan, K. Lukas, W.S. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, and Z.F. Ren, High thermoelectric performance by resonant dopant indium in nanostructured SnTe. Proc. Natl. Acad. Sci. U. S. A. 110, 13261–13266 (2013).

    Article  CAS  Google Scholar 

  25. R. Orabi, J. Hwang, C.C. Lin, R. Gautier, B. Fontaine, W. Kim, J.S. Rhyee, D. Wee, and M. Fornari, Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe: Ga materials. Chem. Mater. 29, 612–620 (2017).

    Article  Google Scholar 

  26. M. Zhou, Z.M. Gibbs, H. Wang, Y.M. Han, C.N. Xin, L.F. Li, and G.J. Snyder, Optimization of thermoelectric efficiency in SnTe: the case for the light band. Phys. Chem. Chem. Phys. 16, 20741–20748 (2014).

    Article  CAS  Google Scholar 

  27. L.P. Tan, T. Sun, S.F. Fan, R.V. Ramanujan, and H.H. Hng, Facile precipitation of two phase alloys in SnTe0.75Se0.25 with improved power factor. J. Alloys Compd. 587, 420–427 (2014).

    Article  CAS  Google Scholar 

  28. G.J. Tan, L.D. Zhao, F.Y. Shi, J.W. Doak, S.H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, and M.G. Kanatzidis, High thermoelectric performance of p-Type SnTe via a synergistic band engineering and nanostructuring approach. J. Am. Chem. Soc. 136, 7006–7017 (2014).

    Article  CAS  Google Scholar 

  29. L.D. Zhao, X. Zhang, H.J. Wu, G.J. Tan, Y.L. Pei, Y. Xiao, C. Chang, D. Wu, H. Chi, L. Zheng, S.K. Gong, C. Uher, J.Q. He, and M.G. Kanatzidis, Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J. Am. Chem. Soc. 138, 2366–2373 (2016).

    Article  CAS  Google Scholar 

  30. G.J. Tan, F.Y. Shi, H. Sun, L.D. Zhao, C. Uher, V.P. Dravid, and M.G. Kanatzidis, SnTe–AgBiTe2 as an efficient thermoelectric material with low thermal conductivity. J. Mater. Chem. A 2, 20849–20854 (2014).

    Article  CAS  Google Scholar 

  31. A.S. Pashinkin, A.S. Malkova, and M.S. Mikhailova, Standard enthalpy and heat capacity of solid tin telluride. Russ. J. Phys. Chem. 80, 1342–1343 (2006).

    Article  CAS  Google Scholar 

  32. Q.L. Cheng, J.B. Pang, D.H. Sun, J.G. Wang, S. Zhang, F. Liu, Y.K. Chen, R.Q. Yang, N. Liang, X.H. Lu, Y.C. Ji, J. Wang, C.C. Zhang, Y.H. Sang, H. Liu, and W.J. Zhou, WSe2 2D p-type semiconductor-based electronic devices for information technology: design, preparation, and applications. InfoMat. 4, 656–697 (2020).

    Article  Google Scholar 

  33. Y.H. Wang, J.B. Pang, Q.L. Cheng, L. Han, Y.F. Li, X. Meng, B. Ibarlucea, H.B. Zhao, F. Yang, H.Y. Liu, H. Liu, W.J. Zhou, X. Wang, M.H. Rummeli, Y. Zhang, and G. Cuniberti, Applications of 2D-Layered Palladium Diselenide and Its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 143, 1–52 (2021).

    Google Scholar 

  34. P.G. Burke, B.M. Curtin, J.E. Bowers, and A.C. Gossard, Minority carrier barrier heterojunctions for improved thermoelectric efficiency. Nano Energy 12, 735–741 (2015).

    Article  CAS  Google Scholar 

  35. D. Zhang, J.Y. Yang, Q.H. Jiang, L.W. Fu, Y. Xiao, Y.B. Luo, and Z.Z. Zhou, Ternary CuSbSe2 chalcostibite: facile synthesis, electronic-structure and thermoelectric performance enhancement. J. Mater. Chem. A 4, 4188–4193 (2016).

    Article  CAS  Google Scholar 

  36. D.G. Cahill, S.K. Watson, and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B: Condens. Matter. Mater. Phys. 46, 6131–6140 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is co-financed by the Doctor Talent Project of the Mass Entrepreneurship and Innovation Program of Jiangsu Province, Research and development of high-temperature seals for nitrogen and oxygen sensors (No. 2021320400000361). Technical assistance from the Analytical and Testing Center of HUST is likewise gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Wang.

Ethics declarations

Conflict of interest

I would like to declare on behalf of all the authors that neither the entire paper nor any part of its content has been published or accepted elsewhere and it is not being submitted to any other journal. All the authors have approved the manuscript and agree with submission to your esteemed journal. There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhou, Z. & Lin, X. Achieving High Thermoelectric Performance of SnTe Composites with 2D WSe2. J. Electron. Mater. 51, 486–494 (2022). https://doi.org/10.1007/s11664-021-09309-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09309-5

Keywords

Navigation