Skip to main content
Log in

Performance Enhancement of ZnMgO:Al/ZnMgO/CIGSSe Solar Cell With the Combination of CZTGSe HT-ERL Layer

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The performance of conventional magnesium-doped zinc oxide (ZnMgO) and copper-indium-gallium-sulphur-selenide (CIGSSe)-based heterojunction thin-film solar cells has been enhanced. The simulation of a conventional (Ni/Al)/ZnMgO:Al/ZnMgO/CIGSSe/Mo solar cell is done at the beginning of the paper to validate the simulation results with the experimental results. Electrical and optical parameter values obtained from the simulation are comparable to the results obtained from the experiment. Also, the efficiency of the conventional structure is increased to 26.53% by optimizing the thickness and doping concentration. A different structure is proposed that combines the copper-zinc-tin-gallium-diselenide (CZTGSe) p-type semiconductor at the back surface field (BSF) contact as a hole transport-electron reflected layer (HT-ERL). The efficiency of the proposed structure is enhanced by 7.63% compared to the recent contemporary literature and 1.10% compared to the optimized results. Moreover, the proposed structure comprises (Ni/Al)/ZnMgO:Al/ZnMgO/CIGSSe/CZTGSe/Mo, which provides the highest conversion efficiency of (η = 27.63%), an open-circuit voltage of (Voc= 807.3 mV), a short-circuit current density of (Jsc= 27.59 mA/cm2), and a fill factor of (FF = 82.26%), under the AM1.5G air mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y.K. Liao, Y.C. Wang, Y.T. Yen, C.H. Chen, D.H. Hsieh, S.C. Chen, and Y.L. Chueh, ACS Nano (2013). https://doi.org/10.1021/nn402976b.

    Article  Google Scholar 

  2. Y.H. Khattak, F. Baig, B. Marí, S. Beg, S.R. Gillani, and T. Ahmed, J. Electron. Mater. (2018). https://doi.org/10.1007/s11664-018-6405-4.

    Article  Google Scholar 

  3. A. Pathania, R. Pandey, J. Madan, and R. Sharma, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04086-z.

    Article  Google Scholar 

  4. F.A. Jhuma, M.Z. Shaily, and M.J. Rashid, Mater. Renew. Sustain Energy (2019). https://doi.org/10.1007/s40243-019-0144-1.

    Article  Google Scholar 

  5. M. Abdolmaleky, and F. Shama, Optik (2018). https://doi.org/10.1016/j.ijleo.2018.07.038.

    Article  Google Scholar 

  6. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, Prog. Photovolt. Res. Appl. (2020). https://doi.org/10.1002/pip.3371.

    Article  Google Scholar 

  7. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, and K. Yamamoto, Nat. energy (2017). https://doi.org/10.1038/nenergy.2017.32.

    Article  Google Scholar 

  8. A. Richter, M. Hermle, and S.W. Glunz, IEEE J. Photovolt. (2013). https://doi.org/10.1109/JPHOTOV.2013.2270351.

    Article  Google Scholar 

  9. G.S. Sahoo, S. Routray, K.P. Pradhan, and G.P. Mishra, IEEE Trans. Electron Devices (2020). https://doi.org/10.1109/TED.2021.3076034.

    Article  Google Scholar 

  10. P.S. Babu, P.K. Singh, A.K. Thakur, and D.K. Dwivedi, Optik (2021). https://doi.org/10.1016/j.ijleo.2020.166235.

    Article  Google Scholar 

  11. A. Hu, J. Zhou, P. Zhou, X. Wu, and D. Yang, Sol. Energy Mater. Sol. Cells (2020). https://doi.org/10.1016/j.solmat.2020.110595.

    Article  Google Scholar 

  12. S. Ahmmed, A. Aktar, M.F. Rahman, J. Hossain, and A.B.M. Ismail, Optik (2021). https://doi.org/10.1016/j.ijleo.2020.165625.

    Article  Google Scholar 

  13. S.M. Alqahtani, A.A.B. Baloch, S.S. Ahmed, and F.H. Alharbi, IEEE Trans. Electron Devices (2020). https://doi.org/10.1109/TED.2020.2975888.

    Article  Google Scholar 

  14. M.W. Bouabdelli, F. Rogti, M. Maache, and A. Rabehi, Optik (2020). https://doi.org/10.1016/j.ijleo.2020.164948.

    Article  Google Scholar 

  15. S. Sharbati, I. Gharibshahian, and A.A. Orouji, Sol. Energy (2019). https://doi.org/10.1016/j.solener.2019.05.074.

    Article  Google Scholar 

  16. A. Chihi, M.F. Boujmil, and B. Bessais, J. Electron. Mater. (2017). https://doi.org/10.1007/s11664-017-5547-0.

    Article  Google Scholar 

  17. I. Gharibshahian, S. Sharbati, and A.A. Orouji, Thin Solid Films (2018). https://doi.org/10.1016/j.tsf.2018.04.014.

    Article  Google Scholar 

  18. C.H. Huang, W.J. Chuang, C.P. Lin, Y.L. Jan, and Y.C. Shih, Curr. Comput.-Aided Drug Des. (2018). https://doi.org/10.3390/cryst8070296.

    Article  Google Scholar 

  19. J. Ramanujam, and U.P. Singh, Energy Envir. Sci. (2017). https://doi.org/10.1039/c7ee00826krsc.li/ees.

    Article  Google Scholar 

  20. B. Bérenguier, N. Barreau, A. Jaffre, D. Ory, J. Guillemoles, J.P. Kleider, and L. Lombez, Thin Solid Films (2019). https://doi.org/10.1016/j.tsf.2018.11.030.

    Article  Google Scholar 

  21. S.H. Moon, S.J. Park, Y.J. Hwang, D. Lee, Y. Cho, D.W. Kim, and B.K. Min, Sci. Rep. (2014). https://doi.org/10.1038/srep04408.

    Article  Google Scholar 

  22. S.Y. Kim, T.R. Rana, J.H. Kim, and J.H. Yun, J. Korean Phys. Soc. (2017). https://doi.org/10.3938/jkps.71.1012.

    Article  Google Scholar 

  23. R.N. Bhattacharya, M.A. Contreras, B. Egaas, R.N. Noufi, A. Kanevce, and J.R. Sites, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2410230.

    Article  Google Scholar 

  24. M. Moradi, R. Teimouri, M. Saadat, and M. Zahedifar, Optik (2017). https://doi.org/10.1016/j.ijleo.2017.02.037.

    Article  Google Scholar 

  25. S. Bechlaghem, B. Zebentout, and Z. Benamara, Results Phys. (2018). https://doi.org/10.1016/j.rinp.2018.07.006.

    Article  Google Scholar 

  26. T. Kato, J. Wu, Y. Hirai, H. Sugimoto, and V. Bermudez, IEEE J. Photovolt. (2018). https://doi.org/10.1109/JPHOTOV.2018.2882206.

    Article  Google Scholar 

  27. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, IEEE J. Photovolt. (2019). https://doi.org/10.1109/JPHOTOV.2019.2937218.

    Article  Google Scholar 

  28. C.W. Teng, J.F. Muth, U. Ozgür, M.J. Bergmann, and H.O. Everitt, Appl. Phys. Lett. (2000). https://doi.org/10.1063/1.125912.

    Article  Google Scholar 

  29. Z.J. Othman, and A. Matoussi, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.02.069.

    Article  Google Scholar 

  30. F. Yang, Y.H. Lin, and J.C. Li, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01767-2.

    Article  Google Scholar 

  31. S.K. Mohanta, A. Nakamura, and J. Temmyo, J. Appl. Phys (2011). https://doi.org/10.1063/1.3603038.

    Article  Google Scholar 

  32. M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, and A. Mzerd, Results Phys. (2017). https://doi.org/10.1016/j.rinp.2017.01.023.

    Article  Google Scholar 

  33. J. Chantana, T. Kato, H. Sugimoto, and T. Minemoto, Prog. Photovolt. Res. Appl. (2017). https://doi.org/10.1002/pip.2911.

    Article  Google Scholar 

  34. G. Chen, W. Wang, S. Chen, Z. Whang, Z. Huang, B. Zhang, and X. Kong, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.05.150.

    Article  Google Scholar 

  35. J. Chantana, T. Kato, H. Sugimoto, and T. Minemoto, ACS Appl. Mater. Interfaces. (2018). https://doi.org/10.1021/acsami.8b01247.

    Article  Google Scholar 

  36. D. Muchahary, and S. Maity, Superlatt. Microstruct. (2017). https://doi.org/10.1016/j.spmi.2017.05.012.

    Article  Google Scholar 

  37. H. Pang, H. Xu, C. Tang, L. Meng, Y. Ding, J. Xiao, R. Liu, Z. Pang, and W. Huang, Org. Electron. (2019). https://doi.org/10.1016/j.orgel.2018.09.025.

    Article  Google Scholar 

  38. S. Mohammadnejad, Z.M. Bahnamiri, and S.E. Maklavani, Superlatt. Microstruct. (2020). https://doi.org/10.1016/j.spmi.2020.106587.

    Article  Google Scholar 

  39. A. Bouich, B. Hartiti, S. Ullah, H. Ullah, M.E. Touhami, D.M.F. Santos, and B. Mari, Optik (2019). https://doi.org/10.1016/j.ijleo.2019.02.067.

    Article  Google Scholar 

  40. J. Pettersson, C.P. Björkman, U. Zimmermann, and M. Edoff, Thin Solid Films (2011). https://doi.org/10.1016/j.tsf.2010.12.141.

    Article  Google Scholar 

  41. L. Nie, J. Yang, D. Yang, and S. Liu, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-018-00658-2.

    Article  Google Scholar 

  42. R. Stangl, M. Kriegel, and M. Schmidt, Conf. Rec. IEEE 4th World Conf. Photovolt. Energy Conversion (2006). https://doi.org/10.1109/WCPEC.2006.279681.

  43. N. Anand, and P. Kale, Trans. Electr. Electron. Mater. (2020). https://doi.org/10.1007/s42341-020-00220-0.

    Article  Google Scholar 

  44. C.K. Borah, P.K. Tyagi, and S. Kumar, Nanoscale Adv. (2020). https://doi.org/10.1039/D0NA00309C.

    Article  Google Scholar 

  45. K.F. Tai, R. Kamada, T. Yagioka, T. Kato, and H. Sugimoto, Jpn. J. Appl. Phys. (2017). https://doi.org/10.7567/jjap.56.08mc03.

    Article  Google Scholar 

  46. X.H. Xu, H.J. Blythe, M. Ziese, A.J. Behan, J.R. Neal, A. Mokhtari, and G.A. Gehring, New J. Phys. (2006). https://doi.org/10.1088/1367-2630/8/8/135.

    Article  Google Scholar 

  47. S. Karki, P. Paul, G. Rajan, B. Belfore, D. poudel, A. Rockett, E. Danilov, F. Castellano, A. Arehart, and S. Marsillac, IEEE J. Photovolt. (2019). https://doi.org/10.1109/JPHOTOV.2018.2877596.

  48. L.C. Gontijo, G.C. Alfredo, and P.A.P. Nascente, Mater. Sci. Eng. (2012). https://doi.org/10.1016/j.mseb.2012.09.002.

    Article  Google Scholar 

  49. M. Heinemann, and C. Heiliger, J. Appl. Phys. (2011). https://doi.org/10.1063/1.3651391.

    Article  Google Scholar 

  50. J. Chantna, Y. Kawano, T. Nishimura, A. Mavlonov, and T. Minemoto, Sol. Energy Mater. Sol. Cells (2020). https://doi.org/10.1016/j.solmat.2020.110502.

    Article  Google Scholar 

  51. G. Reya, G. Larramonab, S. Bourdaisb, C. Chonéb, B. Delatoucheb, A. Jacobb, G. Dennlerb, and S. Siebentritta, Sol. Energy Mater. Sol. Cells (2018). https://doi.org/10.1016/j.solmat.2017.11.005.

    Article  Google Scholar 

  52. M.D. Wanda, S. Ouédraogo, and J.M.B. Ndjaka, Optik (2019). https://doi.org/10.1016/j.ijleo.2019.02.058.

    Article  Google Scholar 

  53. A. Priya, and S.N. Singh, Superlattices Microstructures. (2021). https://doi.org/10.1016/j.spmi.2021.106840.

    Article  Google Scholar 

  54. S.R. Fatemi, S. Panahi, A. Abbasi, V. Ghods, and M. Amirahmadi, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03700-4.

    Article  Google Scholar 

  55. S. Dinakaran, S.R. Meher, and G.C.J. Swarnavalli, Appl. Phys. A Mater. Sci. Process. (2019). https://doi.org/10.1007/s00339-019-2676-8.

    Article  Google Scholar 

  56. S.E. Maklavani, and S. Mohammadnejad, Opt. Quantum Electron. (2020). https://doi.org/10.1007/s11082-020-02407-4.

    Article  Google Scholar 

  57. H. Movla, E. Abdi, and D. Salami, Optik (2013). https://doi.org/10.1016/j.ijleo.2013.04.064.

    Article  Google Scholar 

  58. S. Tripathi, P. Lohia, and D.K. Dwivedi, Sol. Energy. (2020). https://doi.org/10.1016/j.solener.2020.05.033.

    Article  Google Scholar 

  59. A. Bouarissa, A. Gueddim, N. Bouarissa, and H. Maghraoui-Meherezi, Mater. Sci. Eng. B (2021). https://doi.org/10.1016/j.mseb.2020.114816.

    Article  Google Scholar 

  60. S. Tobbeche, S. Kalache, M. Elbar, M.N. Kateb, and M.R. Serdouk, Opt. Quantum Electron. (2019). https://doi.org/10.1007/s11082-019-2000-z.

    Article  Google Scholar 

  61. Sadanand, and D. K. Dwivedi, Sol. Energy. (2019). https://doi.org/10.1016/j.solener.2019.09.079.

  62. H. Heriche, I. Bouchama, N. Bouarissa, Z. Rouabah, and A. Dilmi, Optik (2017). https://doi.org/10.1016/j.ijleo.2017.07.006.

    Article  Google Scholar 

  63. M. Boubakeur, A. Aissat, M. Ben Arbia, H. Maaref, and J.P. Vilcot, Superlatt. Microstruct. (2020). https://doi.org/10.1016/j.spmi.2019.106377.

    Article  Google Scholar 

  64. A. Jrad, T. Ben Nasr, S. Ammar, and N. Turki-Kamoun, Opt. Quantum Electron. (2019). https://doi.org/10.1007/s11082-019-1983-9.

    Article  Google Scholar 

  65. G.L. MbopdaTcheum, A. TeyouNgoupo, S. Ouédraogo, N. Guirdjebaye, and J.M.B. Ndjaka, Pramana-J. Phys. (2020). https://doi.org/10.1007/s12043-020-01977-y.

    Article  Google Scholar 

  66. M. Saadat, O. Amiri, and A. Rahdar, Sol. Energy. (2019). https://doi.org/10.1016/j.solener.2019.07.093.

    Article  Google Scholar 

  67. T. N. Fridolin, D. K. G. Maurel, G. W. Ejuh, T. T. Bénédicte, and N. J. Marie, J. King Saud Univ. – Sci. (2019). https://doi.org/10.1016/j.jksus.2018.03.026.

  68. K. Sobayel, M. Shahinuzzaman, N. Amin, M.R. Karim, M.A. Dar, R. Gul, M.A. Alghoul, K. Sopian, A.K.M. Hasan, and M. Akhtaruzzaman, Sol. Energy. (2020). https://doi.org/10.1016/j.solener.2020.07.007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raushan Kumar.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumar, A. Performance Enhancement of ZnMgO:Al/ZnMgO/CIGSSe Solar Cell With the Combination of CZTGSe HT-ERL Layer. J. Electron. Mater. 51, 84–103 (2022). https://doi.org/10.1007/s11664-021-09179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09179-x

Keywords

Navigation