Skip to main content

Advertisement

Log in

Effect of ZnS, iZnO, dZnO and Cu(In,Ga)Se2 thickness on the performance of simulated Mo/Cu(In,Ga)Se2/ZnS/iZnO/dZnO solar cell

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, Mo/Cu(In,Ga)Se2/ZnS/iZnO/dZnO solar cell is simulated and optimized by studying the effect of layers thickness on solar cell efficiency using Silvaco ATLAS software. The input simulation parameters are: dielectric permittivity \(\left(\upvarepsilon \right)\), band gap energy \(\left( {E_{g} } \right)\), electron affinity \(\left(\upchi \right)\), conduction band effective density of states \(\left( {N_{c} } \right)\), valence band effective density of states \(\left( {N_{v} } \right)\). The output parameters used to find the optimum values of the layers thickness are the short circuit current density \(\left( {I_{sc} } \right)\), open circuit voltage \(\left( {V_{oc} } \right)\), maximum power \(\left( {P_{max} } \right)\), fill factor \(\left( {\text{FF}} \right)\), efficiency \(\left(\upeta \right)\), Current–voltage (I–V) and power–voltage (P–V) characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Belarbi, M., Beghdad, M., Mekemeche, A.: Simulation and optimization of n-type interdigitated back contact silicon heterojunction (IBC-SiHJ) solar cell structure using Silvaco Tcad Atlas. Sol. Energy 127, 206–215 (2016)

    Article  ADS  Google Scholar 

  • Bhattacharya, R.N., Oh, M.-K., Kim, Y.: CIGS-based solar cells prepared from electrodeposited precursor films. Sol. Energy Mater. Sol. Cells 98, 198–202 (2012)

    Article  Google Scholar 

  • Boukortt, N.: Development of high-efficiency PERC solar cells using Atlas Silvaco. Silicon 185, 707–715 (2018). https://doi.org/10.1007/s12633-018-9838-8

    Article  Google Scholar 

  • Caballero, R., Nichterwitz, M., Steigert, A., Eicke, A., Lauermann, I., Schock, H.W., et al.: Impact of Na on MoSe2 formation at the CIGSe/Mo interface in thin-film solar cells on polyimide foil at low process temperatures. Acta Mater. 63, 54–62 (2014)

    Article  Google Scholar 

  • Colombara, D., Crossay, A., Regesch, D., Broussillou, C., de Monsabert, T.G., Grand, P.-P., et al.: Prediction of photovoltaic p–n device short circuit current by photoelectrochemical analysis of p-type CIGSe films. Electrochem. Commun. 48, 99–102 (2014)

    Article  Google Scholar 

  • Conibeer, G.J.: Solar Cell Materials Developing Technologies. Wiley, Hoboken (2014)

    Book  Google Scholar 

  • Contreras, M., Tuttle, J., Du, D., Qi, Y., Swartzlander, A., Tennant, A., et al.: Graded bandgap Cu(In,Ga)Se2 thinfilm solar cell absorber with enhanced open circuit voltage. Appl. Phys. Lett. 1824, 10–13 (1993)

    Google Scholar 

  • Elbar, M., Tobbeche, S.: Numerical simulation of CGS/CIGS single and tandem thin-film solar cells using the Silvaco-Atlas software. Energy Procedia 74, 1220–1227 (2015)

    Article  Google Scholar 

  • Feurer, T., Reinhard, P., Avancini, E., Bissig, B., Löckinger, J., Fuchs, P., et al.: Solar cells utilizing small molecular weight organic semiconductors. Prog. Photovolt. Res. Appl. 15, 659–676 (2007)

    Article  Google Scholar 

  • Hariskos, D., Spiering, S., Powalla, M.: Buffer layers in Cu (In,Ga)Se2 solar cells and modules. Thin Solid Films 481, 99–109 (2005)

    Article  ADS  Google Scholar 

  • Hosen, B., Ali, K., Bahar, A.N.: Non-toxic buffer layers in flexible Cu(In,Ga)Se2 photovoltaic cell applications with optimized absorber thickness. Int. J. Photoenergy 2017, 1–8 (2017)

    Google Scholar 

  • Islam, M.M., Ishizuka, S., Yamada, A., Sakurai, K., Niki, S., Sakurai, T., et al.: CIGS solar cell with MBE-grown ZnS buffer layer. Sol. Energy Mater. Sol. Cells 93, 970–972 (2009)

    Article  Google Scholar 

  • Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., et al.: New world record efficiency for Cu(In,Ga)Se2 thin film solar cells beyond 20%. Prog. Photovolt. Res. Appl. 19, 894–897 (2011)

    Article  Google Scholar 

  • Jackson, P., Hariskos, D., Wuerz, R., Kiowski, O., Bauer, A., Friedlmeier, T.M., et al.: Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Phys. Status Solidi Rapid Res. Lett. 9, 28–31 (2015)

    Article  ADS  Google Scholar 

  • Kiermasch, D., Bolink, H.J., Tvingstedt, K.: Effects of masking on open-circuit voltage and fill factor in solar cells. Joule 3, 16–26 (2019). https://doi.org/10.1016/j.joule.2018.10.016

    Article  Google Scholar 

  • Li, W., Yan, X., Xu, W., Long, J., Aberle, A.G., Venkataraj, S.: Efficiency improvement of CIGS solar cells by a modified rear contact 157, 486–495 (2017)

    Google Scholar 

  • Liu, W.-L., Chen, W.-J., Hsieh, S.-H., Yu, J.-H.: Growth behavior of nanocrystalline ZnS thin films for solar cell using CBD technique. Procedia Eng. 36, 46–53 (2012)

    Article  Google Scholar 

  • Liu, J., Zhang, M., Feng, X.: Simulation of graded bandgap on the performance of back-wall superstrate CIGS solar cells. Opt. Int. J. Light Electron Opt. 172, 1172–1178 (2018)

    Article  Google Scholar 

  • Mahmood, K., Bin Park, S.: Atmospheric pressure based electrostatic spray deposition of transparent conductive ZnO and Al-doped ZnO (AZO) thin films: effects of Al doping and annealing treatment. Electron. Mater. Lett. 9, 161–170 (2013)

    Article  ADS  Google Scholar 

  • Matin, M.A., Datta, A.J.: Modeling, simulation and optimization of high performance CIGS solar. Cell 57, 26–30 (2012)

    Google Scholar 

  • Murata, M., Hironiwa, D., Ashida, N., Chantana, J., Aoyagi, K., Kataoka, N., et al.: Optimum bandgap profile analysis of Cu (In,Ga)Se2 solar cells with various defect densities by SCAPS. Jpn. J. Appl. Phys. 14, 2–6 (2014)

    Google Scholar 

  • Nakada, T.: Microstructural and diffusion properties of CIGS thin film solar cells fabricated using transparent conducting oxide back contacts. Thin Solid Films 481, 419–425 (2005)

    Article  ADS  Google Scholar 

  • Nguyen, M., Ernits, K., Tai, K.F., Ng, C.F., Pramana, S.S., Sasangka, W.A., et al.: ZnS buffer layer for Cu2ZnSn(SSe)4 monograin layer solar cell. Sol. Energy 111, 344–349 (2015)

    Article  ADS  Google Scholar 

  • Ramli, H., Kamal, S., Rahim, A., Rahim, T.A.B.D., Aminuddin, M.M.: Optimization of zinc sulfide (ZnS) electron affinity in copper indium sulfide (CIS) based photovoltaic cell. Chalcogenide Lett. 10, 189–195 (2013)

    Google Scholar 

  • Rodriguez-Alvarez, H., Mainz, R., Caballero, R., Abou-Ras, D., Klaus, M., Gledhill, S., et al.: Real-time study of Ga diffusion processes during the formation of Cu(In,Ga)Se2: the role of Cu and Na content. Sol. Energy Mater. Sol. Cells 116, 102–109 (2013)

    Article  Google Scholar 

  • Saha, U., Alam, K.: Proposition of an environment friendly triple junction solar cell based on earth abundant CBTSSe/CZTS/ACZTSe materials. Phys. Status Solidi Rapid Res. Lett. (RRL) 12, 1–5 (2018). https://doi.org/10.1002/pssr.201700335

    Article  Google Scholar 

  • Saji, V.S., Choi, I.H., Lee, C.W.: Progress in electrodeposited absorber layer for CuIn(1−x)GaxSe2 (CIGS) solar cells. Sol. Energy 85, 2666–2678 (2011)

    Article  ADS  Google Scholar 

  • Singh, P., Gautam, R., Sharma, S., Kumari, S., Verma, A.S.: Simulated solar cell device of CuGaSe2 by using CdS, ZnS and ZnSe buffer layers. Mater. Sci. Semicond. Process. 42, 288–302 (2015)

    Article  Google Scholar 

  • Sultana, R.S., Bahar, A.N., Ahmed, K.: Numerical modeling of a CdS/CdTe photovoltaic cell based on ZnTe BSF layer with optimum thickness of absorber layer. Cogent Eng. 2017, 1–12 (2010)

    Google Scholar 

  • Sun, J., Nalla, V., Nguyen, M., Ren, Y., Chiam, S.Y., Wang, Y., et al.: Effect of Zn(O, S) buffer layer thickness on charge carrier relaxation dynamics of CuInSe2 solar cell. Sol. Energy 115, 396–404 (2015)

    Article  ADS  Google Scholar 

  • Sylla, A., Touré, S., Vilcot, J.: Numerical modeling and simulation of CIGS-based solar cells with ZnS buffer layer. Open J. Model. Simul. 5, 218–231 (2017)

    Article  Google Scholar 

  • Zhong, Z.Y., Cho, E.S., Kwon, S.J.: Characterization of the ZnS thin film buffer layer for Cu(In,Ga)Se2 solar cells deposited by chemical bath deposition process with different solution concentrations. Mater. Chem. Phys. 135, 287–292 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.090

    Article  Google Scholar 

  • Zi-qiang, X., Hong, D., Yan, L., Hang, C.: Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO: Al thin films. Mater. Sci. Semicond. Process. 9, 132–135 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhak Jrad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jrad, A., Ben Nasr, T., Ammar, S. et al. Effect of ZnS, iZnO, dZnO and Cu(In,Ga)Se2 thickness on the performance of simulated Mo/Cu(In,Ga)Se2/ZnS/iZnO/dZnO solar cell. Opt Quant Electron 51, 265 (2019). https://doi.org/10.1007/s11082-019-1983-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1983-9

Keywords

Navigation