Skip to main content

Advertisement

Log in

The impact of SnMnO2 TCO and Cu2O as a hole transport layer on CIGSSe solar cell performance improvement

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, two experimental CIGSSe thin-film solar cells (TFSCs) are simulated and demonstrate high efficiency of 20 and 22.92%. The photovoltaic results of both devices are then validated based on the experiential optoelectronic values. After the simulation, a compelling result is confirmed for both the experimental and simulated solar cells. Finally, various designs are proposed. The proposed Type-1 solar cell is designed by the addition of low resistivity, wide energy bandgap (Eg), and minimum absorption coefficient (α) based tin-doped manganese oxide (Sn1−xMnxO2) material in a conventional solar cell instead of ZnO:B and ZnMgO:Al transparent conducting oxide (TCO) layers. Further, by matching the band energy alignment and adjusting the thickness and doping concentration of the TCO, buffer, and absorber layers, the efficiency of the proposed Type1 TFSC has been increased from 20 to 27.75%. The proposed Type-1 solar cell has some drawbacks, such as the inability to appropriately suppress the photogenerated minority carrier recombination losses due to the absence of a hole transport layer (HTL), and the external quantum efficiency (EQE) is lower than that of the conventional solar cell. Furthermore, wide band energy and a high α based on cuprous oxide (Cu2O) as an HTL are added between the absorber and the back ohmic contact layers in the proposed Type-1 solar cell. Then the structure becomes a Type-2 TFSC. The Type-2 TFSC absorbs more blue light, instantly suppressing the recombination losses and enhancing power conversion efficiency (PCE) (η = 29.01%) and EQE (97%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Barman, B., Kalita, P.K.: Influence of back surface field layer on enhancing the efficiency of CIGS solar cell. Sol. Energy 216, 329–337 (2021)

    Article  Google Scholar 

  2. Patel, A.K., Mishra, R., Soni, S.K.: Performance enhancement of CIGS solar cell with two dimensional MoS2 hole transport layer. Micro Nanostruct. 165, 207195 (2022)

    Article  Google Scholar 

  3. Moujoud, S., Hartiti, B., Touhtouh, S., Fadili, S., Faddouli, A., Belhora, F., Hajjaji, A.: Efficiency enhancement by simulation method of copper antimony disulfide thin film based solar cells. Mater. Today Commun. 31, 103415 (2022)

    Article  Google Scholar 

  4. Sara, B., Baya, Z., Zineb, B.: Investigation of Cu (In, Ga) Se2 solar cell performance with non-cadmium buffer layer using TCAD-SILVACO. Mater. Sci. Pol 36(3), 514–519 (2018)

    Article  Google Scholar 

  5. Biplab, S.R.I., Ali, M.H., Moon, M.M.A., Pervez, M.F., Rahman, M.F., Hossain, J.: Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer. J. Comput. Electron. 19, 342–352 (2020)

    Article  Google Scholar 

  6. Ould Saad Hamady, S.: Solis: a modular, portable, and high-performance 1D semiconductor device simulator. J. Comput. Electron. 19(2), 640–647 (2020)

    Article  Google Scholar 

  7. Prajapati, A., Llobet, J., Antunes, M., Martins, S., Fonseca, H., Calaza, C., Shalev, G.: An efficient and deterministic photon management using deep subwavelength features. Nano Energy 70, 104521 (2020)

    Article  Google Scholar 

  8. Prajapati, A., Llobet, J., Antunes, M., Martins, S., Fonseca, H., Calaza, C., Shalev, G.: Opportunities for enhanced omnidirectional broadband absorption of the solar radiation using deep subwavelength structures. Nano Energy 70, 104553 (2020)

    Article  Google Scholar 

  9. Marko, G., Prajapati, A., Shalev, G.: Subwavelength nonimaging light concentrators for the harvesting of the solar radiation. Nano Energy 61, 275–283 (2019)

    Article  Google Scholar 

  10. Prajapati, A., Nissan, Y., Gabay, T., Shalev, G.: Broadband absorption of the solar radiation with surface arrays of subwavelength light funnels. Nano Energy 54, 447–452 (2018)

    Article  Google Scholar 

  11. Mohottige, R.N., Vithanage, S.P.K.: Numerical simulation of a new device architecture for CIGS-based thin-film solar cells using 1D-SCAPS simulator. J. Photochem. Photobiol. A 407, 113079 (2021)

    Article  Google Scholar 

  12. Alqahtani, S.M., Baloch, A.A., Ahmed, S.S., Alharbi, F.H.: Dilute oxygen alloys of ZnS as a promising toxic-free buffer layer for Cu (In, Ga)Se2 thin-film solar cells. IEEE Trans. Electron Dev. 67(4), 1666–1673 (2020)

    Article  Google Scholar 

  13. Yan, L., Bai, Y., Yang, B., Chen, N., Tan, Z.A., Hayat, T., Alsaedi, A.: Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band. Curr. Appl. Phys. 18(4), 484–490 (2018)

    Article  Google Scholar 

  14. Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H.: Cd-free Cu (In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt. 9(6), 1863–1867 (2019)

    Article  Google Scholar 

  15. Bouabdelli, M.W., Rogti, F., Maache, M., Rabehi, A.: Performance enhancement of CIGS thin-film solar cell. Optik 216, 164948 (2020)

    Article  Google Scholar 

  16. Nishimura, T., Chantana, J., Mavlonov, A., Kawano, Y., Masuda, T., Minemoto, T.: Device design for high-performance bifacial Cu (In, Ga) Se2 solar cells under front and rear illuminations. Sol. Energy 218, 76–84 (2021)

    Article  Google Scholar 

  17. Yuan, Z.K., Chen, S., Xie, Y., Park, J.S., Xiang, H., Gong, X.G., Wei, S.H.: Na-diffusion enhanced p-type conductivity in Cu (In, Ga) Se2: a new mechanism for efficient doping in semiconductors. Adv. Energy Mater. 6(24), 1601191 (2016)

    Article  Google Scholar 

  18. Berenguier, B., Barreau, N., Jaffré, A., Ory, D., Guillemoles, J.F., Kleider, J.P., Lombez, L.: Defects characterization in thin films photovoltaics materials by correlated high-frequency modulated and time resolved photoluminescence: An application to Cu (In, Ga) Se2. Thin Solid Films 669, 520–524 (2019)

    Article  Google Scholar 

  19. Moon, S.H., Park, S.J., Hwang, Y.J., Lee, D.K., Cho, Y., Kim, D.W., Min, B.K.: Printable, wide band-gap chalcopyrite thin films for power generating window applications. Sci. Rep. 4(1), 1–6 (2014)

    Article  Google Scholar 

  20. Luo, H., Zhang, Y., Li, H.: Effect of MoS2 interlayer on performances of copper-barium-tin-sulfur thin film solar cells via theoretical simulation. Sol. Energy 223, 384–397 (2021)

    Article  Google Scholar 

  21. Dinakaran, S., Meher, S.R., Swarnavalli, G.C.J.: One-dimensional modeling for an investigation into parameter optimization, crossover and red-kink behavior of ZnMgO buffer layer Cd-free Cu (In, Ga) Se2 solar cell. Appl. Phys. A 125, 1–15 (2019)

    Article  Google Scholar 

  22. Sharbati, S., Gharibshahian, I., Orouji, A.A.: Designing of AlxGa1−xAs/CIGS tandem solar cell by analytical model. Sol. Energy 188, 1–9 (2019)

    Article  Google Scholar 

  23. Chelvanathan, P., Hossain, M.I., Amin, N.: Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 10(3), S387–S391 (2010)

    Article  Google Scholar 

  24. Bär, M., Bohne, W., Röhrich, J., Strub, E., Lindner, S., Lux-Steiner, M.C., Karg, F.: Determination of the band gap depth profile of the penternary Cu (In (1−X) Ga X)(SY Se (1− Y))2 chalcopyrite from its composition gradient. J. Appl. Phys. 96(7), 3857–3860 (2004)

    Article  Google Scholar 

  25. Shih, Y.T., Tsai, Y.C., Lin, D.Y.: Synthesis and characterization of CuIn1−xGaxSe2 semiconductor nanocrystals. Nanomaterials 10(10), 2066 (2020)

    Article  Google Scholar 

  26. Ghorbani, T., Zahedifar, M., Moradi, M., Ghanbari, E.: Influence of affinity, band gap and ambient temperature on the efficiency of CIGS solar cells. Optik 223, 165541 (2020)

    Article  Google Scholar 

  27. Asaduzzaman, M., Hasan, M., Bahar, A.N.: An investigation into the effects of band gap and doping concentration on Cu (In, Ga) Se2 solar cell efficiency. Springer Plus 5(1), 1–8 (2016)

    Article  Google Scholar 

  28. Chantana, J., Kato, T., Sugimoto, H., Minemoto, T.: Thin-film Cu (In, Ga)(Se, S)2-based solar cell with (Cd, Zn)S buffer layer and Zn1−xMgxO window layer. Prog. Photovolt. Res. Appl. 25(6), 431–440 (2017)

    Article  Google Scholar 

  29. Chantana, J., Kato, T., Sugimoto, S., Minemoto, T.: 20% efficient Zn0.9Mg0.1O:Al/Zn0.8Mg0.2O/ Cu(In, Ga)(S, Se)2 solar cell prepared by all-dry process through a combination of heat-light-soaking and light-soaking processes. ACS Appl. Mater. Interfaces 10(13), 11361–11368 (2018)

    Article  Google Scholar 

  30. Kato, T., Handa, A., Yagioka, T., Matsuura, T., Yamamoto, K., Higashi, S., Sugimoto, H.: Enhanced efficiency of Cd-free Cu (In, Ga)(Se, S)2 minimodule via (Zn, Mg)O second buffer layer and alkali metal post-treatment. IEEE J. Photovolt. 7(6), 1773–1780 (2017). https://doi.org/10.1109/JPHOTOV.2017.2745710

    Article  Google Scholar 

  31. Kato, T., Wu, J.L., Hirai, Y., Sugimoto, H., Bermudez, V.: Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu (In, Ga)(Se, S)2. IEEE J. Photovolt. 9(1), 325–330 (2018)

    Article  Google Scholar 

  32. Fridolin, T.N., Maurel, D.K.G., Ejuh, G.W., Benedicte, T.T., Marie, N.J.: Highlighting some layers properties in performances optimization of CIGSe based solar cells: case of Cu (In, Ga) Se–ZnS. J. King Saud Univ. Sci. 31(4), 1404–1413 (2019)

    Article  Google Scholar 

  33. Sobayel, K., Shahinuzzaman, M., Amin, N., Karim, M.R., Dar, M.A., Gul, R., Akhtaruzzaman, M.: Efficiency enhancement of CIGS solar cell by WS2 as window layer through numerical modelling tool. Sol. Energy 207, 479–485 (2020)

    Article  Google Scholar 

  34. Priya, A., Singh, S.N.: Enhancement of efficiency and external quantum efficiency of CIGSSe solar cell by replacement and inserting buffer and Cu2O ER-HTL layer. Superlatt Microstruct. 152, 106840 (2021)

    Article  Google Scholar 

  35. Srikant, V., Clarke, D.R.: On the optical band gap of zinc oxide. J. Appl. Phys. 83(10), 5447–5451 (1998)

    Article  Google Scholar 

  36. Kumar, V., Singh, R.G., Purohit, L.P., Mehra, R.M.: Structural, transport and optical properties of boron-doped zinc oxide nanocrystalline. J. Mater. Sci. Technol. 27(6), 481–488 (2011)

    Article  Google Scholar 

  37. Chantana, J., Kawano, Y., Nishimura, T., Kato, T., Sugimoto, H., Minemoto, T.: Characterisation of Cd-Free Zn1–xMgxO:Al/Zn1–x MgxO/Cu (In, Ga)(S, Se)2 solar cells fabricated by an all dry process using ultraviolet light excited time-resolved photoluminescence. ACS Appl. Mater. Interfaces. 11(7), 7539–7545 (2019)

    Article  Google Scholar 

  38. Ganose, A.M., Scanlon, D.O.: Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics. J. Material Chemistry C 4(7), 1467–1475 (2016)

    Article  Google Scholar 

  39. Brahma, R., Krishna, M.G., Bhatnagar, A.K.: Optical, structural and electrical properties of Mn doped tin oxide thin films. Bull Mater Sci. 29(3), 317–322 (2006)

    Article  Google Scholar 

  40. Chen, X.G., Li, W.W., Wu, J.D., Sun, J., Jiang, K., Hu, Z.G., Chu, J.H.: Temperature dependence of electronic band transition in Mn-doped SnO2 nanocrystalline films determined by ultraviolet-near-infrared transmittance spectra. Mater. Res. Bull. 47(1), 111–116 (2012)

    Article  Google Scholar 

  41. Arora, I., Malhotra, K., Mahajan, A., Kumar, P.: Structural, optical and electrical characterization of spin coated SnO2: Mn thin films. Mater. Today Proc. 36, 697–700 (2021)

    Article  Google Scholar 

  42. Azam, A., Ahmed, A.S., Habib, S.S., Naqvi, A.H.: Effect of Mn doping on the structural and optical properties of SnO2 nanoparticles. J. Alloy. Compd. 523, 83–87 (2012)

    Article  Google Scholar 

  43. Ahmad, N., Khan, S., Ansari, M.M.N.: Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors. Ceram. Int. 44(13), 15972–15980 (2018)

    Article  Google Scholar 

  44. Lekshmy, S.N.S., Anitha, V.S.N., Thomas, P.V., Joy, K.: Magnetic properties of Mn-doped SnO2 thin films prepared by the sol-gel dip coating method for dilute magnetic semiconductors. J. Am. Ceram. Soc. 10(97), 3184–3191 (2014)

    Article  Google Scholar 

  45. Gandhi, T.I., Babu, R.R., Ramamurthi, K., Arivanandhan, M.: Effect of Mn doping on the electrical and optical properties of SnO2 thin films deposited by chemical spray pyrolysis technique. Thin Solid Films 598, 195–203 (2016)

    Article  Google Scholar 

  46. Iivonen, T., Heikkilä, M.J., Popov, G., Nieminen, H.E., Kaipio, M., Kemell, M., Leskelä, M.: Atomic layer deposition of photoconductive Cu2O thin films. ACS Omega 4(6), 11205–11214 (2019)

    Article  Google Scholar 

  47. Rafea, M.A., Roushdy, N.: Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. J. Phys. D Appl. Phys 42(1), 015413 (2009)

    Article  Google Scholar 

  48. Malerba, C., Biccari, F., Ricardo, C.L.A., D’Incau, M., Scardi, P., Mittiga, A.: Absorption coefficient of bulk and thin film Cu2O. Sol. Energy Mater. Sol. Cells 95(10), 2848–2854 (2011)

    Article  Google Scholar 

  49. Kevin, M., Ong, W.L., Lee, G.H., Ho, G.W.: Formation of hybrid structures: copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 22(23), 235701 (2011)

    Article  Google Scholar 

  50. Varache, R., Leendertz, C., Gueunier-Farret, M.E., Haschke, J., Muñoz, D., Korte, L.: Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Solar Energy Mater. Solar Cells 141, 14–23 (2015)

    Article  Google Scholar 

  51. Anand, N., Kale, P.: Optimisation of TOPCon structured solar cell using AFORS-HET. Trans. Electr. Electron. Mater. 22(2), 160–166 (2020)

    Article  Google Scholar 

  52. Borah, C.K., Tyagi, P.K., Kumar, S.: The prospective application of a graphene/MoS2 heterostructure in Si-HIT solar cells for higher efficiency. Nanoscale Adv. 2(8), 3231–3243 (2020)

    Article  Google Scholar 

  53. Mohanta, S.K., Nakamura, A., Temmyo, J.: Nitrogen and copper doping in MgxZn1−xO films and their impact on p-type conductivity. J. Appl. Phys. 110(1), 013524 (2011)

    Article  Google Scholar 

  54. Trunk, M., Venkatachalapathy, V., Galeckas, A., Kuznetsov, A.Y.: Deep level related photoluminescence in ZnMgO. Appl. Phys. Lett. 97(21), 211901 (2010)

    Article  Google Scholar 

  55. Rouchdi, M., Salmani, E., Fares, B., Hassanain, N., Mzerd, A.: Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study. Results Phys. 7, 620–627 (2017). https://doi.org/10.1016/j.rinp.2017.01.023

    Article  Google Scholar 

  56. Nardone, M., Patikirige, Y., Walkons, C., Bansal, S., Friedlmeier, T.M., Kweon, K.E., Lordi, V.: Baseline models for three types of CIGS cells: effects of buffer layer and Na content. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC pp. 3013–3018, https://doi.org/10.1109/PVSC.2018.8548167

  57. Stokes, A., Al-Jassim, M., Norman, A., Diercks, D., Gorman, B.: Nanoscale insight into the p-n junction of alkali-incorporated Cu (In, Ga)Se2 solar cells. Prog. Photovolt. Res. Appl. 25(9), 764–772 (2017)

    Article  Google Scholar 

  58. Schnohr, C.S., Kämmer, H., Stephan, C., Schorr, S., Steinbach, T., Rensberg, J.: Atomic-scale structure and band-gap bowing in Cu (In, Ga) Se2. Phys. Rev. B 85(24), 245204 (2012)

    Article  Google Scholar 

  59. Kumar, R., Kumar, A.: Performance enhancement of ZnMgO: Al/ZnMgO/CIGSSe solar cell with the combination of CZTGSe HT-ERL layer. J. Electron. Mater. 50(1), 84–103 (2021)

    Article  Google Scholar 

  60. Senol, S.D., Yalcin, B., Ozugurlu, E., Arda, L.: Structure, microstructure, optical and photocatalytic properties of Mn-doped ZnO nanoparticles. Mater. Res. Exp. 7(1), 015079 (2020)

    Article  Google Scholar 

  61. Larsson, F., Keller, J., Primetzhofer, D., Riekehr, L., Edoff, M., Törndahl, T.: Atomic layer deposition of amorphous tin-gallium oxide films. J. Vac. Sci. Technol. A Vac. Surf. Films 37(3), 030906 (2019)

    Article  Google Scholar 

  62. Kumar, A., Kumar, M., Singh, R.P.: Study on electronic, magnetic, optical and thermoelectric properties of manganese oxide (MnO): DFT based spin polarised calculations. Optik 241, 167064 (2021)

    Article  Google Scholar 

  63. Jrad, A., Nasr, T.B., Ammar, S., Turki-Kamoun, N.: Effect of ZnS, iZnO, dZnO and Cu (In, Ga)Se2 thickness on the performance of simulated Mo/Cu (In, Ga)Se2/ZnS/iZnO/dZnO solar cell. Opt. Quantum Electron. 51(8), 1–10 (2019)

    Article  Google Scholar 

  64. Ramírez-Esquivel, O.Y., Mazón-Montijo, D.A., Cabrera-German, D., Martínez-Guerra, E., Montiel-González, Z.: Atomic layer deposition supercycle approach applied to the Al-doping of nearly saturated ZnO surfaces. Ceram. Int. 47(5), 7126–7134 (2021)

    Article  Google Scholar 

  65. Othman, Z.J., Matoussi, A.: Morphological and optical studies of zinc oxide doped MgO. J. Alloys Compd. 671, 366–371 (2016)

    Article  Google Scholar 

  66. Aristizabal, A.J., Mikan, M.A.: Optical properties of CDS films by analysis of spectral transmittance. IOSR J. Appl. Phys. 8(4), 24–31 (2016). https://doi.org/10.9790/4861-0804022431

    Article  Google Scholar 

  67. Tang, P., Li, B., Feng, L.: The optical and electrical properties of ZnO: Al thin films deposited at low temperatures by RF magnetron sputtering. Ceram. Int. 44(4), 4154–4157 (2018)

    Article  Google Scholar 

  68. Gontijo, L.C., Cunha, A.G., Nascente, P.A.: Electrical, optical, and structural properties of thin films with tri-layers of AZO/ZnMgO/AZO grown by filtered vacuum arc deposition. Mater. Sci. Engg. B 177(20), 1783–1787 (2012)

    Article  Google Scholar 

  69. Wang, H., Zhang, Y., Kou, X.L., Cai, Y.A., Liu, W., Yu, T., Sun, Y.: Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process. Semicond. Sci. Technol. 25(5), 055007 (2010)

    Article  Google Scholar 

  70. Chantana, J., Kato, T., Sugimoto, H., Minemoto, T.: Aluminum-doped Zn1− xMgxO as transparent conductive oxide of Cu(In, Ga)(S, Se)2-based solar cell for minimising surface carrier recombination. Prog. Photovolt. Res. Appl. 25(12), 996–1004 (2012)

    Article  Google Scholar 

  71. Kim, S., Yoon, H., Kim, S.O., Leem, J.Y.: Optical properties and electrical resistivity of boron-doped ZnO thin films grown by sol–gel dip-coating method. Opt. Mater. 35(12), 2418–2424 (2013)

    Article  Google Scholar 

  72. Wen, B., Liu, C.Q., Wang, N., Wang, H.L., Liu, S.M., Ren, Y.H., Chai, W.P.: Properties of transparent conductive boron-doped ZnO thin films deposited by pulsed DC magnetron sputtering from Zn1−xBx O targets. Appl. Phys. A 123(3), 1–8 (2017)

    Article  Google Scholar 

  73. Alsaad, A.M., Al-Bataineh, Q.M., Ahmad, A.A., Albataineh, Z., Telfah, A.: Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: a novel derived mathematical model from the experimental transmission spectra. Optik 211, 164641 (2020)

    Article  Google Scholar 

  74. Huang, C.Y., Parashar, P., Chou, H.M., Lin, Y.S., Lin, A.: A path-finding toward high-efficiency penternary Cu (In, Ga)(Se, S)2 thin film solar module. Optik 179, 837–847 (2019)

    Article  Google Scholar 

  75. Mishra, S., Bhargava, K., Deb, D.: Numerical simulation of potential induced degradation (PID) in different thin-film solar cells using SCAPS-1D. Sol. Energy. 188, 353–360 (2019)

    Article  Google Scholar 

  76. Avis, C., Kim, S.H., Kim, K.H., Jang, J., Hong, S.J., Nam, Y.D., Hur, J.H.: B-ion doping effect in ZnO thin-films. J. Korean Phys. Soc. 54(1), 535–538 (2009)

    Article  Google Scholar 

  77. Tai, K.F., Kamada, R., Yagioka, T., Kato, T., Sugimoto, H.: From 20.9 to 22.3% Cu (In, Ga)(S, Se)2 solar cell: reduced recombination rate at the heterojunction and the depletion region due to K-treatment. Jpn. J. Appl. Phys. 56(8S2), 1–6 (2017). https://doi.org/10.7567/JJAP.56.08MC03

    Article  Google Scholar 

  78. Kulikov, V.D., Yakovlev, V.Y.: Absorption of light by free charge carriers in the crystalline CdS under intense electron irradiation. Russ. Phys. J. 59(5), 744–749 (2016)

    Article  Google Scholar 

  79. Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y., Mitzi, D.B.: Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4(7), 1301465 (2014)

    Article  Google Scholar 

  80. Karki, S., Paul, P., Rajan, G., Belfore, B., Poudel, D., Rockett, A., Marsillac, S.: Analysis of recombination mechanisms in RbF-treated CIGS solar cells. IEEE J. Photovolt. 9(1), 313–318 (2018)

    Article  Google Scholar 

  81. Chantana, J., Kawano, Y., Nishimura, T., Mavlonov, A., Minemoto, T.: Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells. Sol. Energy Mater. Sol. Cells 210, 110502 (2020)

    Article  Google Scholar 

  82. Parisi, A., Pernice, R., Rocca, V., Curcio, L., Stivala, S., Cino, A.C., Busacca, A.C.: Graded carrier concentration absorber profile for high efficiency CIGS solar cells. Int. J. Photoenergy (2015). https://doi.org/10.1155/2015/410549

    Article  Google Scholar 

  83. Heinemann, M., Heiliger, C.: Auger recombination rates in ZnMgO from first principles. J. Apply. Phys. 110(8), 083103 (2011)

    Article  Google Scholar 

  84. Muchahary, D., Maity, S.: High-efficiency thin film ZnMgO/ZnO solar cell simulation approach: Temperature dependency, BSF and efficient small signal analysis. Superlatt. Microstruct. 109, 209–216 (2017)

    Article  Google Scholar 

  85. Pettersson, J., Platzer-Björkman, C., Zimmermann, U., Edoff, M.: Baseline model of graded-absorber Cu (In, Ga) Se2 solar cells applied to cells with Zn1−xMgxO buffer layers. Thin Solid Films 519(21), 7476–7480 (2010)

    Article  Google Scholar 

  86. Tsokkou, D., Othonos, A., Zervos, M.: Carrier dynamics and conductivity of SnO2 nanowires investigated by time-resolved terahertz spectroscopy. Appl. Phys. Lett. 100(13), 133101 (2012)

    Article  Google Scholar 

  87. Chevallier, C., Bose, S., Hamady, S.O.S., Fressengeas, N.: Numerical investigations of the impact of buffer germanium composition and low cost fabrication of Cu2O on AZO/ZnGeO/Cu2O solar cell performances. EPJ Photovolt. 12(3), 3 (2021)

    Article  Google Scholar 

  88. Zakutayev, A., Stevanovic, V., Lany, S.: Non-equilibrium alloying controls optoelectronic properties in Cu2O thin films for photovoltaic absorber applications. Appl. Phys. Lett. 106(12), 123903 (2015)

    Article  Google Scholar 

  89. Wolfe, J.P., Jang, J.I.: The search for Bose-Einstein condensation of excitons in Cu2O: exciton-auger recombination versus biexciton formation. New J. Phys. 16(12), 123048 (2014)

    Article  Google Scholar 

  90. Valladares, L.D.L.S., Salinas, D.H., Dominguez, A.B., Najarro, D.A., Khondaker, S.I., Mitrelias, T., Majima, Y.: Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films 520(20), 6368–6374 (2012)

    Article  Google Scholar 

  91. Hssi, A.A., Atourki, L., Labchir, N., Ouafi, M., Abouabassi, K., Elfanaoui, A., Bouabid, K.: Optical and dielectric properties of electrochemically deposited p-Cu2O films. Mater. Res. Exp. 7(1), 016424 (2020)

    Article  Google Scholar 

  92. Et-taya, L., Ouslimane, T., Benami, A.: Numerical analysis of earth-abundant Cu2ZnSn (SxSe1−x) solar cells based on Spectroscopic Ellipsometry results by using SCAPS-1D. Sol. Energy. 201, 827–835 (2020)

    Article  Google Scholar 

  93. Bouarissa, A., Gueddim, A., Maghraoui-Meherezi, H.: Modeling of ZnO/MoS2/CZTS photovoltaic solar cell through TCO, buffer and absorber layers optimisation. Mater. Sci. Eng. B 263, 114816 (2021)

    Article  Google Scholar 

  94. Rahman, M.A.: Enhancing the photovoltaic performance of Cd-free Cu2ZnSnS4 heterojunction solar cells using SnS HTL and TiO2 ETL. Sol. Energy. 215, 64–76 (2021)

    Article  Google Scholar 

  95. Tripathi, S., Lohia, P., Dwivedi, D.K.: Contribution to sustainable and environmental friendly non-toxic CZTS solar cell with an innovative hybrid buffer layer. Sol. Energy. 204, 748–760 (2020)

    Article  Google Scholar 

  96. Guirdjebaye, N., Ouédraogo, S., Ngoupo, A.T., Tcheum, G.M., Ndjaka, J.M.B.: Junction configurations and their impacts on Cu (In, Ga) Se2 based solar cells performances. Opto Electron. Rev. 27(1), 70–78 (2019)

    Article  Google Scholar 

  97. Bag, A., Radhakrishnan, R., Nekovei, R., Jeyakumar, R.: Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Sol. Energy 196, 177–182 (2020)

    Article  Google Scholar 

  98. Cetinkaya, S.: Study of electrical effect of transition-metal dichalcogenide-MoS2 layer on the performance characteristic of Cu2ZnSnS4 based solar cells using wxAMPS. Optik 181, 627–638 (2019)

    Article  Google Scholar 

  99. Vallisree, S., Thangavel, R., Lenka, T.R.: Theoretical investigations on enhancement of photovoltaic efficiency of nanostructured CZTS/ZnS/ZnO based solar cell device. J. Mater. Sci. Mater. Electron. 29(9), 7262–7272 (2018)

    Article  Google Scholar 

  100. Liu, W., Li, H., Qiao, B., Zhao, S., Xu, Z., Song, D.: Highly efficient CIGS solar cells based on a new CIGS bandgap gradient design characterized by numerical simulation. Sol. Energy 233, 337–344 (2022)

    Article  Google Scholar 

  101. Prasad, R., Pal, R., Singh, U.P.: Performance optimization of single graded CIGS absorber and buffer layers for high efficiency: a numerical approach. Superlattices Microstruct. 161, 107094 (2022)

    Article  Google Scholar 

  102. Gharibshahian, I., Orouji, A.A., Sharbati, S.: Effectiveness of band discontinuities between CIGS absorber and copper-based hole transport layer in limiting recombination at the back contact. Mater. Today Commun. 33, 104220 (2022)

    Article  Google Scholar 

  103. Mabvuer, F.T., Nya, F.T., Kenfack, G.M.D.: Improving the absorption spectrum and performance of CIGS solar cells by optimizing the stepped band gap profile of the multilayer absorber. Sol. Energy 240, 193–200 (2022)

    Article  Google Scholar 

  104. Kumar, R., Kumar, A.: Development of high efficiency Ce1–BMgBO2 buffer and perovskite HTL based CIGSSe thin film solar cell using a simulation approach. Phys. B 653, 414691 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Electronics and Communication Engineering at the National Institute of Technology, Jamshedpur, India, for providing all the support for their research.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Raushan Kumar: Conceptualization, methodology, modelling and writing–original draft. Akhilesh Kumar: Supervision, validation, and editing of draft. Ravi Pushkar: modelling and editing. Alok Priyadarshi: Methodology, writing and editing of original draft.

Corresponding author

Correspondence to Raushan Kumar.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumar, A., Pushkar, R. et al. The impact of SnMnO2 TCO and Cu2O as a hole transport layer on CIGSSe solar cell performance improvement. J Comput Electron 22, 1107–1127 (2023). https://doi.org/10.1007/s10825-023-02050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02050-8

Keywords

Navigation