Skip to main content
Log in

Magnetic Exchange Coupling in an Orthorhombic Mn2SnS4 System

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic structure and magnetism of Mn2SnS4 are analysed with full-potential first-principles calculations. In order to understand the possible influence of magnetic structure, we have performed calculations of total energies for both ferromagnetic (FM) and antiferromagnetic (AFM) orderings. Antiferromagnetic ordering is of three types. Our computed results reveal that Mn2SnS4 exhibits an AFM-I type antiferromagnetic ordering. The exchange interaction parameters, which reflects the electrostatic Coulomb repulsion of electrons on neighboring atoms and the Pauli principle, were estimated to be J1 = − 14.1 meV, J2= − 5.3 meV and J3 = − 8.2 meV according to the Heisenberg model. It was shown that all values are negative and J1 has the highest absolute value, demonstrating strong antiferromagnetic pairing dominating between the nearest magnetic Mn ions and weak antiferromagnetic coupling within the next-nearest Mn ions. The position of the sulfur atoms have no impact on the values of the aforementioned energies, which validates that the magnetism in Mn2SnS4 is dominated mainly by direct exchange. The associated energy differences involving spin orderings can be used to evaluate the critical temperature of the compounds Mn2SnS4. Our calculations show that taking into account the spin–orbit coupling has no significant effect on the accuracy of the band gap of Mn2SnS4. The calculated results of equilibrium volume, antiferromagnetic ordering type, local magnetic moment, and band gap are in good agreement with reported experimental results. The relative differences between spin configurations can be used to derive observables such as Curie-Weiss temperature (θ). The Curie-Weiss temperature is calculated using the mean-field approximation. Reasonable agreement with the experiment is found for all properties including the equilibrium volume, local magnetic moment, antiferromagnetic ordering type, band gap, and the Curie-Weiss temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.V. Gomonay, and V.M. Loktev, Low Temp. Phys. 40, 17 (2014).

    Article  CAS  Google Scholar 

  2. R.A. Duine, K.-J. Lee, S.S.P. Parkin, and M.D. Stiles, Nat. Phys. 14, 217 (2018).

    Article  CAS  Google Scholar 

  3. P. Němec, M. Fiebig, T. Kampfrath, and A.V. Kimel, Nat. Phys. 14, 229 (2018).

    Article  Google Scholar 

  4. T. Jungwirth, J. Sinova, A. Manchon, X. Marti, J. Wunderlich, and C. Felser, Nat. Phys. 14, 200 (2018).

    Article  CAS  Google Scholar 

  5. L. Smejkal, T. Jungwirth, “Symmetry and topology in antiferromagnetic spintronics”, Book chapter 2018 (2018).

  6. M.B. Jungfleischa, W. Zhang, and A. Hoffmann, Phys. Lett. A. 382, 865 (2018).

    Article  Google Scholar 

  7. T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Nat. Nanotech. 11, 231 (2016).

    Article  CAS  Google Scholar 

  8. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).

    Article  CAS  Google Scholar 

  9. T. Shen, C. Hu, W.L. Yang, H.C. Liu, and X.L. Wei, Mat. Sci. Semicon. Proc. 34, 114 (2015).

    Article  CAS  Google Scholar 

  10. L.E. Gonchar, J. Mag. Mag. Mat. 465, 661 (2018).

    Article  CAS  Google Scholar 

  11. M. Quintero, D. Ferrer, D. Caldera, E. Moreno, E. Quintero, M. Morocoima, P. Grima, P. Bocaranda, G.E. Delgado, and J.A. Henao, J. Alloy. Compd. 469, 4 (2009).

    Article  CAS  Google Scholar 

  12. T.S. Dasha, S. Naika, S.D. Kaushikb, D. Samalc, and S.L. Samala, J. Mag. Mag. Mat. 304, 32386 (2019).

    Google Scholar 

  13. T.S. Dash, S.D. Kaushik, S.N. Sarangi, D. Samal, S. Moun, C.S. Yadav, and S.L. Samal, Dalton Trans. 49, 6425 (2020).

    Article  CAS  Google Scholar 

  14. Y. Cao, S.M. Denny, J.V. Casper, W.E. Farneth, Q. Guo, A.S. Ionkin, L.K. Johnson, M. Lu, I. Malajovich, D. Radu, H.D. Rosenfeld, K.R. Choudhury, and W. Wu, J. Am. Chem. Soc. 134, 15644 (2012).

    Article  CAS  Google Scholar 

  15. I. Chung, and G.M. Kanatzidis, Chem. Mater. 26, 849 (2014).

    Article  CAS  Google Scholar 

  16. G. Li, K. Wu, Q. Liu, Z. Yang, and S. Pan, J. Am. Chem. Soc. 138, 7422 (2016).

    Article  CAS  Google Scholar 

  17. K. Wu, Z. Yang, and S. Pan, Chem. Mater. 28, 2795 (2016).

    Article  CAS  Google Scholar 

  18. G.M. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Article  CAS  Google Scholar 

  19. T.T. Gangjian, L.D. Zhao, and G.M. Kanatzidis, Chem. Rev. 116, 12123 (2016).

    Article  Google Scholar 

  20. A. Maignan, E. Guilmeau, F. Gascoin, Y. Breard, and V. Hardy, Sci. Technol. Adv. Mater. 13, 053003 (2012).

    Article  CAS  Google Scholar 

  21. H.K. Vivanco, and E.E. Rodriguez, J. Solid State Chem. 242, 3 (2016).

    Article  CAS  Google Scholar 

  22. D.C. Johnson, Adv. Phys. 59, 803 (2010).

    Article  Google Scholar 

  23. J.-Y. Chang, G.-Q. Wang, C.-Y. Cheng, W.-X. Lin, and J.-C. Hsu, J. Mater. Chem. 22, 10609 (2012).

    Article  CAS  Google Scholar 

  24. M. Partik, Th. Stingl, H.D. Lutz, H. Sabrowsky, and P. Vogt, Anorg. Allg. Chem. 621, 1600 (1995).

    Article  CAS  Google Scholar 

  25. J. Xue-Fan, L. Xian-Feng, W. Yin-Zhong, and H. Jiu-Rong, Chinese Phys. B 21, 077502 (2012).

    Article  Google Scholar 

  26. M. Musa Saad H.-E, Journal of Science: Advanced Materials and Devices. 468: 30184 (2016)

  27. P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2K, An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties (Vienna: Technical University of Vienna, 2001).

    Google Scholar 

  28. K. Ozdogan, M. Upadhyay Kahaly, S.R. Sarath Kumar, H.N. Alshareef, U. Schwingenschlogl, J. Appl. Phys. 111, 054313 (2012)

  29. M. Wintenberger, and J.C. Jumas, Acta Cryst. B 36, 1993 (1980).

    Article  Google Scholar 

  30. V.G. Tyuterev, and N. Vast, Comput. Mater. Sci. 38, 350 (2006).

    Article  CAS  Google Scholar 

  31. T.S. Dash, S. Naik, S.D. Kaushik, D. Samal, and S.L. Samal, J. Magn. Magn. Mater. 497, 165991 (2019).

    Article  Google Scholar 

  32. A. Schrön, C. Rödl, and F. Bechstedt, Phys. Rev. B 82, 165109 (2010).

    Article  Google Scholar 

  33. R. Logemann, A.N. Rudenko, M.I. Katsnelson, and A. Kirilyuk, J. Phys-Condens. Mat. 29, 335801 (2017).

    Article  CAS  Google Scholar 

  34. S. Vasala, H. Saadaoui, E. Morenzoni, O. Chmaissem, T.-S. Chan, J.-M. Chen, Y.-Y. Hsu, H. Yamauchi, and M. Karppinen, Phys. Rev. B 89, 134419 (2014).

    Article  Google Scholar 

  35. M. Zhang, S. Lin, K. Ren, Z. Wang, Y. Pan, Y. Wang, Y. Cui, W. Zhang, and R. Wanga, J. Mag. Mag. Mat. 441, 296 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The computational resources and services used in this work were provided by the HPC-Emir (High-Performance Computing HPC), funded by MASCARA University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bouhani Benziane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benziane, H.B., Sahnoun, M., Bettine, K. et al. Magnetic Exchange Coupling in an Orthorhombic Mn2SnS4 System. J. Electron. Mater. 50, 5819–5827 (2021). https://doi.org/10.1007/s11664-021-09105-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09105-1

Keywords

Navigation